EDITORIAL TUTOR FORMACION

Seleccion de componentes

[27]

EDITORIAL TUTOR FORMACION

Elegir los componentes adecuados para un sistema no es tan simple como descargar cualquier
libreria o herramienta de Internet. Cada software tiene requisitos especificos, y seleccionar las
piezas correctas puede marcar la diferencia entre una aplicacion fluida y escalable o un sistema
lleno de problemas de compatibilidad y rendimiento. Son como piezas de un rompecabezas que
hacen que una aplicacion funcione de manera eficiente. No se trata solo de descargar un programa
y usarlo, sino de asegurarse de que cada pieza encaje perfectamente con las demas. ;Para qué
sirven? Pues, basicamente, para facilitar el trabajo de los desarrolladores y mejorar el rendimiento
de los sistemas sin tener que construirlo todo desde cero. Los componentes pueden ser comerciales
(COTS), adaptables (MOTS) o de coédigo abierto, cada uno con sus ventajas y limitaciones.
Mientras que los comerciales suelen ofrecer soporte y estabilidad, los de codigo abierto permiten
mas personalizacion y flexibilidad.

No solo importa de donde proviene un componente, sino también como encaja en el conjunto del
sistema. La compatibilidad con entornos cloud, la facilidad de integracion, el rendimiento y la
seguridad son factores clave en esta decision. Hoy en dia, herramientas como Infrastructure as Code
(IaC) facilitan la parametrizacion y configuracion de componentes, mientras que la automatizacion
ayuda a garantizar que las actualizaciones sean seguras y eficientes. En resumen, una buena
seleccion de componentes puede hacer que un sistema sea mas robusto y preparado para evolucionar
con el tiempo.

Por ejemplo, imagina que necesitas que tu aplicacion permita a los usuarios iniciar sesion con su
cuenta de Google o Facebook. En lugar de programar todo el sistema de autenticacion desde el
principio, puedes usar un componente de seguridad, como OAuth o OpenlD Connect, que ya tiene
todo listo para verificar identidades y gestionar accesos. Asi, tu aplicacion se vuelve mas segura sin
que tengas que reinventar la rueda.

Otra funcion importante de los componentes es hacer que diferentes partes del sistema se
comuniquen entre si. Supongamos que tienes una tienda online y necesitas conectar el carrito de
compras con un sistema de pagos como PayPal o Stripe. En lugar de programar toda la conexion
manualmente, usas un componente que ya esta disefiado para manejar estas transacciones de manera
segura y rapida. Eso significa menos errores y una mejor experiencia para los usuarios.

Ademas, los componentes ayudan a mantener un sistema estable y escalable. Si tu aplicacion
empieza a recibir mas usuarios de los esperados, algunos componentes, como balanceadores de
carga o servidores en la nube, permiten que la plataforma se adapte sin colapsar. Es como tener un
restaurante con pocas mesas y, de repente, recibir una gran cantidad de clientes: si tienes un sistema
que puede "agregar mas mesas" automaticamente, podras atender a todos sin problemas.

Los componentes comerciales, como software de gestion empresarial (ERP) o bases de datos de
pago, que ofrecen soluciones listas para usar con soporte técnico. Son ideales para empresas que
necesitan estabilidad y garantia de funcionamiento, aunque pueden tener menos flexibilidad que las
opciones de codigo abierto, que permiten modificaciones seglin las necesidades.

Ademas, los componentes ahorran tiempo y dinero. Si un equipo de desarrollo tuviera que
programar cada detalle desde cero, los proyectos tardarian mucho mas y serian mucho mas costesos.
Al reutilizar componentes bien disefiados, se puede lanzar un producto mas rapido y con menos
errores, lo que beneficia tanto a los programadores como a los usuarios.

[28]

EDITORIAL TUTOR FORMACION

1. Tipos de componentes.

Los componentes de software pueden clasificarse en distintas categorias segin su origen, su
disponibilidad y su forma de distribucion. Algunos son productos comerciales que se adquieren con
licencias, mientras que otros son de codigo abierto y pueden utilizarse, modificarse y redistribuirse
libremente.

Componentes de Software

\

Componentes de codigo
abierto

Componentes comerciales

COTS Saa$S

La eleccion del tipo de componente depende de varios factores, como el presupuesto disponible, la
flexibilidad que se necesita, el nivel de soporte técnico requerido y la compatibilidad con la
infraestructura existente. Ademas, en entornos modernos, donde muchas aplicaciones se despliegan
en la nube o en entornos hibridos, es importante considerar como se integran estos componentes
con plataformas cloud y soluciones on-premise.

1.1. Componentes comerciales (COTS y Saa\S).

Los componentes comerciales son soluciones de software desarrolladas y vendidas por empresas
especializadas. Se disefan para resolver problemas especificos sin necesidad de desarrollos a
medida, lo que permite a las organizaciones reducir costes y tiempos de implementacion. Dentro
de esta categoria encontramos dos tipos principales:

COTS (Commercial Off-The-Shelf)

Son productos listos para usar, disefiados para cubrir necesidades estandar en diversas industrias.
Ejemplos de COTS incluyen herramientas de gestion empresarial como SAP ERP, bases de datos
como Microsoft SQL Server y plataformas de desarrollo como OutSystems. La ventaja de estos
productos es que estan ampliamente probados y cuentan con soporte técnico, aunque pueden tener
limitaciones en cuanto a personalizacion y costes de licencias.

(Cuando elegir COTS (Commercial Off-The-Shelf)?

Empresas con requisitos de personalizacion estrictos: Si una organizacion necesita
adaptar el software a su estructura interna, los productos COTS pueden ser una opcioén
viable. Por ejemplo, un banco que requiere un sistema de bases de datos con seguridad
avanzada y compatibilidad con normativas financieras puede optar por un sistema como
Microsoft SQL Server o SAP ERP.

[29]

EDITORIAL TUTOR FORMACION

Sistemas con regulacion estricta: En sectores como el sanitario, financiero o
gubernamental, donde se exige el cumplimiento de normativas de seguridad y privacidad
(como GDPR o ISO 27001), los COTS son preferidos debido a su estabilidad y
certificaciones.

Empresas que quieren evitar problemas de compatibilidad: Muchas organizaciones
optan por COTS porque garantizan compatibilidad con otros productos comerciales. Por
ejemplo, una empresa que usa Windows Server y Microsoft 365 podria elegir Microsoft
SQL Server en lugar de una base de datos de codigo abierto para facilitar la integracion.

SaaS (Software as a Service)

Es un modelo en el que las aplicaciones se ejecutan en la nube y los usuarios acceden a ellas a través
de Internet. Ejemplos conocidos incluyen Google Workspace, Microsoft 365, Salesforce y AWS
Lambda. Este modelo ofrece actualizaciones automaticas, escalabilidad y facilidad de acceso desde
cualquier lugar, pero depende de la conectividad a Internet y puede implicar costes recurrentes.

(Cuando elegir SaaS (Software as a Service)?

Startups y empresas con equipos remotos: Las empresas que necesitan herramientas de
colaboracion y gestion en la nube pueden beneficiarse de soluciones SaaS como Google
Workspace o Microsoft 365. Al no requerir servidores propios, se reducen los costes de
infraestructura.

Negocios con necesidades dinamicas: Empresas que requieren escalabilidad sin
preocuparse por mantenimiento pueden elegir SaaS, ya que estas plataformas se ajustan
automaticamente a la demanda. Un CRM como Salesforce permite a las empresas
gestionar clientes sin preocuparse por el crecimiento del sistema.

Empresas con presupuesto reducido: SaaS permite pagar por suscripcion mensual o
anual sin necesidad de grandes inversiones iniciales. Para una pyme que busca una solucion
de almacenamiento sin gastar en servidores, Dropbox Business o Google Drive pueden
ser opciones ideales.

En general, los componentes comerciales son una opcidn atractiva para empresas que buscan
soluciones estables y con soporte garantizado. Sin embargo, pueden no ser la mejor alternativa para
desarrollos que requieren un alto grado de personalizacion o para organizaciones con restricciones
presupuestarias.

Actividad 4

Las empresas suelen enfrentarse a la decision de utilizar soluciones comerciales para sus
necesidades tecnologicas. En esta actividad, analizaras las diferencias entre los componentes
COTS (Commercial Off-The-Shelf) y SaaS (Software as a Service) y reflexionaras sobre sus
ventajas y limitaciones en distintos escenarios.

Parte 1:

Relaciona cada caracteristica con el tipo de componente comercial al que pertenece (COTS o
SaaS):

e Producto listo para usar que se instala en servidores locales.
e Se accede a través de un navegador sin necesidad de instalacion.
e Puede requerir una inversion inicial alta en licencias.

[30]

EDITORIAL TUTOR FORMACION

e Actualizaciones automaticas gestionadas por el proveedor.
e Mayor posibilidad de personalizacion, pero con mayor complejidad en la implementacion.
e Dependencia de conexion a Internet para su uso.
e Ejemplo: SAP ERP, Microsoft SQL Server.
e Ejemplo: Google Workspace, Salesforce.
Parte 2:

Imagina que trabajas como consultor/a tecnoldgico y debes asesorar a una empresa que busca
una solucion de software para mejorar su gestion interna. Analiza cada uno de los siguientes
casos y responde con cual opcion recomendarias (COTS o SaaS) y por qué.

Caso 1: Una empresa manufacturera con estrictos requisitos de personalizacion y normativas de
seguridad que necesita un software de gestion empresarial.

Caso 2: Una startup con un equipo remoto que requiere herramientas colaborativas para
comunicacion y almacenamiento de documentos sin preocuparse por infraestructura propia.

Caso 3: Un banco que busca un sistema de base de datos robusto, altamente seguro y con soporte
técnico dedicado para manejar grandes volumenes de transacciones.

1.2. Componentes de codigo abierto 'y
frameworks modernos (Spring Boot,
Quarkus, Express.js, NestJS).

El software de codigo abierto ha ganado una gran popularidad en los ultimos afios, gracias a su
flexibilidad, la colaboracion de la comunidad y la ausencia de costes de licenciamiento. A diferencia
de los componentes comerciales, el codigo abierto permite a los desarrolladores inspeccionar,
modificar y mejorar el software seglin sus necesidades.

En el ambito del desarrollo de aplicaciones, muchos frameworks modernos de codigo abierto
facilitan la creacion de sistemas robustos y escalables. Algunos ejemplos destacados son:

Spring Boot: Un framework basado en Java que simplifica la creacion de aplicaciones
empresariales, con un enfoque modular y una gran integracion con bases de datos y
servicios cloud.

Quarkus: Disefiado para entornos cloud y contenedores, Quarkus es una opcion
eficiente para aplicaciones Java con tiempos de arranque rapidos y bajo consumo de
memoria.

Express.js: Un framework ligero para Node.js que facilita el desarrollo de aplicaciones
web y APIs REST. Es ampliamente utilizado por su simplicidad y su gran
compatibilidad con otras herramientas.

NestJS: Un framework moderno para Node.js que utiliza TypeScript y sigue una
arquitectura modular inspirada en Angular. Es ideal para el desarrollo de aplicaciones
escalables y bien estructuradas.

(Cuando elegir software de codigo abierto?

Empresas con equipos de desarrollo avanzados: Si una empresa cuenta con un
equipo técnico capacitado, el codigo abierto permite adaptar soluciones sin pagar
licencias costesas. Por ejemplo, PostgreSQL es una alternativa a bases de datos
comerciales con alto rendimiento y sin costes de licenciamiento.

[31]

EDITORIAL TUTOR FORMACION

Proyectos de startups con presupuesto limitado: Una startup que quiere construir su
plataforma sin costes de software puede usar frameworks como Express.js para
backend o Vue.js para frontend en lugar de herramientas comerciales.

Sistemas que necesitan compatibilidad y personalizaciéon: Si una empresa busca
adaptar su software sin restricciones de un proveedor, frameworks como Spring Boot
en Java o NestJS en Node.js permiten construir aplicaciones personalizadas y
modulares.

(Cuando no es recomendable el software de codigo abierto?

- Empresas que requieren soporte técnico garantizado: A diferencia del software
comercial, los proyectos de cddigo abierto dependen de la comunidad, lo que puede
generar tiempos de respuesta mas lentos ante problemas criticos.

- Negocios con poca experiencia en seguridad: Muchas vulnerabilidades surgen por
mala gestion de software de codigo abierto. Empresas sin experiencia en ciberseguridad
pueden beneficiarse mas de soluciones comerciales con soporte y auditorias de
seguridad regulares.

1.3. Ventajas e inconvenientes en entornos cloud
y on-premise.

La infraestructura donde se ejecutan los componentes también influye en su seleccion. No todas las
empresas tienen las mismas necesidades, y dependiendo de su modelo de negocio, seguridad y
escalabilidad, pueden optar por soluciones locales (on-premise) o en la nube (cloud). Mientras que
algunas organizaciones prefieren mantener sus datos y sistemas dentro de su propia infraestructura,
otras aprovechan la flexibilidad y escalabilidad de la nube para optimizar recursos y reducir costes.

Las organizaciones con requisitos de privacidad estrictos suelen preferir entornos on-premise.
Por ejemplo, empresas del sector financiero o gubernamental que manejan datos sensibles pueden
optar por soluciones locales para evitar exponer informacion en la nube y garantizar un mayor
control sobre la seguridad y el cumplimiento normativo.

Los negocios con infraestructura propia también pueden beneficiarse del modelo on-premise. Si
una empresa ya ha invertido en servidores y equipos IT, puede ser mas economico seguir utilizando
esos recursos en lugar de migrar a la nube y asumir costes adicionales de suscripcion o
almacenamiento.

Por otro lado, cuando se trata de aplicaciones con baja variabilidad en la demanda, mantener
servidores locales puede ser una opcion mas rentable. Si el uso del sistema es estable y predecible,
pagar por servidores en la nube que escalen automaticamente puede no ser necesario y generar
costes innecesarios.

Las empresas con necesidades de escalabilidad encuentran en la nube una solucion ideal. Startups
o aplicaciones con trafico variable pueden aprovechar los servicios cloud para escalar
dindmicamente sin la necesidad de comprar y mantener nuevos servidores fisicos. De esta manera,
pueden adaptar su infraestructura a la demanda sin grandes inversiones iniciales.

Los equipos distribuidos también se benefician de la nube. Si una empresa tiene empleados en
distintas ubicaciones geograficas, usar soluciones como AWS Lambda o Google Cloud Run
facilita el acceso a las aplicaciones sin depender de una oficina central o infraestructura local.

Ademas, la nube permite reducir costes de mantenimiento. En este modelo, las actualizaciones
de software, la gestion de seguridad y la administracion de servidores son manejadas por el
proveedor, lo que ahorra recursos y tiempo en la administracion interna de la infraestructura.

[32]

EDITORIAL TUTOR FORMACION

Con la adopcion de practicas DevOps, la seleccion de componentes debe considerar su
compatibilidad con herramientas de automatizacion y despliegue continuo. La integracion de estos
elementos permite optimizar procesos, reducir errores humanos y mejorar la eficiencia operativa en
entornos modernos.

Las empresas que necesitan despliegues rapidos y frecuentes deben optar por componentes
compatibles con herramientas de automatizacion. Tecnologias como Docker, Kubernetes y
Terraform permiten gestionar infraestructuras de manera programatica, asegurando que cada
actualizacion se implemente sin interrupciones y de forma eficiente.

En el caso de organizaciones con arquitecturas basadas en microservicios, es fundamental elegir
componentes que faciliten la gestion de multiples servicios en contenedores. Herramientas como
Helm Charts y Kubernetes Operators permiten administrar aplicaciones complejas, asegurando
escalabilidad y facilidad de mantenimiento.

Para los equipos que buscan reducir errores manuales, la infraestructura como codigo (IaC) es
una gran ventaja. Soluciones como Terraform o Ansible permiten definir configuraciones de
forma declarativa, asegurando que todas las instancias del sistema se desplieguen de manera
uniforme y sin inconsistencias.

Como hemos visto, cada tipo de componente tiene ventajas y desventajas dependiendo del entorno
en el que se despliegue. Hoy en dia, muchas organizaciones utilizan infraestructuras hibridas,
combinando soluciones en la nube con sistemas locales (on-premise). Es importante entender como
los distintos tipos de componentes se adaptan a estos entornos.

Entornos cloud

En un entorno en la nube, los componentes pueden ejecutarse en plataformas como AWS,
Microsoft Azure o Google Cloud. Esto ofrece varias ventajas:

v Escalabilidad automatica: Los servicios en la nube permiten ajustar los recursos segin la
demanda.

v' Menor gestion de infraestructura: No es necesario preocuparse por la administracion de
servidores fisicos.

v' Acceso desde cualquier ubicacién: Los equipos pueden trabajar de forma remota sin
problemas.

Sin embargo, también existen desventajas:

x Dependencia del proveedor: Si se elige un componente muy ligado a un proveedor cloud,
puede ser dificil migrar a otra plataforma en el futuro.

% Costes variables: Aunque la nube permite pagar solo por el uso real, los costes pueden
aumentar rapidamente si no se gestionan bien los recursos.

Entornos on-premise

En un entorno on-premise, los componentes se ejecutan en servidores locales dentro de la empresa.
Este modelo tiene sus propios beneficios:

v' Mayor control sobre los datos y la seguridad.
v Personalizacion total de la infraestructura.
v" Menos dependencia de proveedores externos.

[33]

EDITORIAL TUTOR FORMACION

Pero también presenta desventajas:

x Altos costes iniciales: Se requiere una inversion en hardware y en equipos de
administracion.

x Menor flexibilidad: Adaptar la infraestructura a nuevas necesidades puede ser mas
complicado.

En muchos casos, las empresas optan por una solucion hibrida, utilizando componentes en la nube
para aplicaciones de alto trafico y manteniendo sistemas criticos en entornos locales.

[34]

EDITORIAL TUTOR FORMACION

2. Métodos de personalizacion de
componentes.

Cuando se despliegan componentes de software, rara vez se utilizan exactamente como vienen por
defecto. En la mayoria de los casos, es necesario ajustarlos para que se adapten a los requisitos
especificos de cada entorno y aplicacion. La personalizacion de componentes permite mejorar su
integracion, optimizar el rendimiento y facilitar la administracién a lo largo del tiempo.

Existen varias formas de personalizar los componentes, dependiendo del nivel de control que se
necesite. Algunos métodos permiten realizar cambios basicos sin alterar el cédigo fuente, mientras
que otros ofrecen mayor flexibilidad mediante configuraciones avanzadas. A continuacion,
veremos tres enfoques ampliamente utilizados en la industria: la parametrizacion, el uso de
extensiones o plugins y las configuraciones declarativas mediante Infrastructure as Code
(IaC).

2.1. Parametrizacion.

La parametrizacion es una de las formas mas sencillas y efectivas de personalizar un componente
de software. En lugar de modificar directamente el codigo fuente, se configuran variables y ajustes
que determinan su comportamiento sin alterar su estructura interna. Es decir, cuando hablamos de
parametrizacion de software, nos referimos a la técnica de configurar un programa sin tocar su
codigo fuente. Es como cuando ajustamos el brillo y el volumen de un televisor: no cambiamos el
hardware, solo modificamos la forma en que funciona segun nuestras necesidades.

Este método se basa en proporcionar valores de configuracion a través de archivos, variables de
entorno o interfaces de usuario. Por ejemplo, una base de datos como PostgreSQL permite ajustar
parametros como el tamafio del caché, la cantidad de conexiones concurrentes o la politica de
almacenamiento a través de su archivo postgresql.conf. De manera similar, en aplicaciones web, un
archivo config.json puede definir el puerto de ejecucion, la URL de la base de datos y otras opciones
de personalizacion.

La parametrizacion es especialmente util porque evita la necesidad de modificar el codigo fuente
del software. Esto permite actualizar versiones sin perder configuraciones personalizadas y facilita
la administracion en entornos donde se requieren multiples instancias del mismo componente, cada
una con ajustes especificos. Ademas, al mantener la configuracion separada del codigo, se mejora
la seguridad y la portabilidad del software.

[35]

b,

EDITORIAL TUTOR FORMACION

Elegir el método de
paranietrizacion

Archivos de configuracion

Variables de entome

Interfaces de ustiario

Farametrizacion de
Componentes

Definir valores de
- configuracion

/

Aplicar configuraciones al
companente

Se cargan los parametros
en [a aplicacion

Separacion del cddigo y la
configuracion

~ ™~

{ \

Facilita actualizaciones sin

El software se ejecuta con
|05 valores especificados

Mejora la seguridad y

alterar el codigo portabilidad

Esquema del proceso de parametrizacion.

El primer paso es identificar qué aspectos del software se pueden personalizar sin modificar el
codigo. Imagina que tenemos una aplicacion web de reservas de hoteles. Algunos parametros que
podriamos querer ajustar serian:

- Numero maximo de reservas por usuario (ejemplo: 5 reservas simultaneas).
- Hora de cierre del sistema (ejemplo: 23:00 h).

- Tipo de moneda utilizada (ejemplo: euros o dolares).

- Limite de habitaciones disponibles por hotel (ejemplo: 50 habitaciones).

Estos valores deben estar bien definidos para que el sistema pueda funcionar correctamente sin
necesidad de reprogramarlo cada vez que queramos cambiar una configuracion.

Ahora que sabemos qué configuraciones queremos personalizar, necesitamos decidir como y donde
almacenarlas. Existen varias formas de hacerlo:

1. A través de archivos de configuracion:

Se crean archivos como config.json o settings.yaml, donde se guardan los valores de
configuracion. Por ejemplo:

[36]

EDITORIAL TUTOR FORMACION

"max reservas_ por usuario": 5,
"hora cierre": "23:00",
"moneda": "EUR",

"limite habitaciones": 50

— Aqui, el sistema leera estos datos cada vez que arranque y usara esos valores.
Si queremos cambiar la moneda de euros a ddlares, solo editamos "moneda":
"USD", guardamos el archivo y listo.

2. Uso de variables de entorno:

En servidores y contenedores como Docker, se configuran parametros sin tocar archivos.
Ejemplo real usando variables de entorno en un servidor Linux:

export MAX RESERVAS=5

export HORA CIERRE=23:00
export MONEDA=EUR

export LIMITE HABITACIONES=50

— Si el hotel cambia su politica y ahora quiere permitir hasta 10 reservas por usuario,
simplemente actualizamos MAX RESERVAS=10 sin tocar el codigo.

3. Interfaces de usuario (panel de configuracion):

e En aplicaciones avanzadas, se pueden ofrecer paneles de configuracion donde los
administradores cambian los pardmetros sin necesidad de editar archivos o usar comandos.
Por ejemplo, en una pagina web de administracion, el gerente del hotel podria ver opciones
como estas:

[] Nimero maximo de reservas: [5]
[] Hora de cierre: [23:00]

[] Moneda: [EUR / USD / GBP]

[] Limite de habitaciones: [50]

[Guardar cambios]

— Alhacer clic en "Guardar cambios", el sistema actualiza la configuracion y la aplica
en tiempo real.

Una vez que hemos definido los valores y elegido el método de parametrizacion, llega el momento
de hacer que el software use esas configuraciones.

Si usamos archives de configuracion, el software los leerd en cada arranque.
Si usamos variables de entorno, se cargaran automaticamente cuando el sistema inicie.
Si usamos una interfaz de usuario, los cambios se guardaran en una base de datos y se aplicaran
dinamicamente:

import json

Cargar configuracién desde un archivo JSON

[37]

EDITORIAL TUTOR FORMACION

with open ("config.json") as config file:
config = json.load(config file)
Usar la configuracién en la aplicaciédn

print (f"Maximo de reservas por usuario:
{config['max reservas por usuario']}")

print (f"La moneda seleccionada es: {config['moneda']}")

Si cambiamos el archivo config.json para aumentar el limite de reservas, la proxima vez que
iniciemos el programa, el nuevo valor se aplicard automaticamente sin necesidad de modificar el
codigo fuente.

(Por qué es tan importante parametrizar en lugar de meter los valores directamente en el codigo?

- Si queremos cambiar la moneda o los limites de reservas, no tenemos que editar el coédigo
del programa, solo los valores de configuracion.

- No almacenamos contrasefias ni informacion sensible dentro del codigo, sino en archivos
protegidos o en variables de entorno.

- Podemos usar el mismo c6digo para distintos hoteles cambiando solo la configuracion.

2.2. Uso de extensiones (plugins).

En muchos casos, la parametrizacion no es suficiente para adaptar un componente a todas las
necesidades de un sistema. Para estos escenarios, las extensiones o plugins permiten agregar nuevas
funcionalidades sin modificar el software original.

Un ejemplo muy comun de este enfoque es el uso de plugins en navegadores web, que afiaden
funcionalidades extra sin cambiar el nticleo del programa. En el &mbito del desarrollo de software,
plataformas como WordPress permiten ampliar sus capacidades mediante plugins, agregando
desde sistemas de seguridad hasta herramientas de optimizacion de rendimiento.

& G | O hitpsy/eswordpress.org/plugins/ =4

'@I' Plugin Directory Envia un plugin Mis favoritos ~ Acceder

Event Tickets and Registration

o~ Smart Slider 3

|S Tk ek (105 .8 § ¢ de
Plugin adaptable para crear carruseles en el editor visual faciimente. Crea Event Tickets permite a tus visitantes registrar su asistencia y comprar tickets
bonitos carruseles de imégenes, capas, videos, entradas y mucho mas. de eventos en tu sitio. También funciona integrado con The Events Calendar.
A% Nextendweb A% The Events Calendar
Il, 90.000+ instalaciones activas) Prabado con 6.7.2
Pricing Tables WordPress Members - Membership & User Role Editor Plugin
Plugin - Easy Pricing Tables WRNNW (1155
8 8 & fadiEy
Pricing Table Plugin - Easy Pricing Tables Lets You Create A Beautiful, El'mejor plugin de membresia y editor de perfiles de usuario para WordPress.
Responsive Pricing Table In 2 Minutes. No Coding Required. El editor de perfiles y capacidades te ayuda a restringir contenido con unos
pocos clics.
A% fatcatapps A% Blair Williams
1l, 10.000+ instalaciones activa ﬁ' Probado con 6.7.2 1l; 300.000+ instalaciones activas '@ Prabado con 6.7.2

[38]

EDITORIAL TUTOR FORMACION

Los servidores de aplicaciones y bases de datos también utilizan este modelo. En NGINX o
Apache, los modulos y extensiones permiten habilitar funcionalidades como balanceo de carga,
autenticacion y compresion de datos sin modificar el cddigo base. En el caso de PostgreSQL,
existen extensiones como PostGIS, que afiade soporte para datos geoespaciales.

El uso de plugins facilita la personalizacion y mejora la modularidad de los sistemas, permitiendo
que cada instancia tenga solo las funcionalidades necesarias sin sobrecargar el software con
caracteristicas que no se utilizaran. Sin embargo, es importante gestionar bien las dependencias y
asegurarse de que las extensiones sean compatibles con las versiones del software base, para evitar
conflictos o problemas de seguridad.

2.3. Configuraciones declarativas con
Infrastructure as Code ([IaC), Ansible,
Terraform.

En entornos modernos, especialmente en la nube y en infraestructuras escalables, la personalizacion
de componentes no se realiza manualmente en cada servidor, sino que se define mediante codigo
en archivos de configuracion. Este enfoque se conoce como Infrastructure as Code (IaC) y
permite describir toda la infraestructura y su configuracion en archivos de texto legibles y
reutilizables.

Herramientas como Terraform, Ansible y CloudFormation permiten definir, desplegar y
gestionar infraestructuras de manera automatizada. En lugar de configurar servidores y aplicaciones
manualmente, se crean archivos en los que se especifican los recursos necesarios y sus ajustes.

Por ejemplo, con Terraform, un archivo de configuracion puede definir cuantas maquinas virtuales
se necesitan en AWS, su tamafio, qué software deben tener instalado y coémo deben interactuar entre
si. Este archivo puede replicarse facilmente en distintos entornos sin errores humanos.

Con Ansible, en lugar de conectarse a cada servidor y configurar manualmente los componentes,
se pueden crear "playbooks" que describen en YAML qué paquetes instalar, qué archivos modificar
y qué servicios activar. Esto es especialmente util en despliegues masivos, donde cientos de
servidores deben tener la misma configuracion.

El uso de configuraciones declarativas tiene varias ventajas. Primero, permite mantener la
infraestructura bajo control y evitar configuraciones inconsistentes entre servidores. Segundo,
mejora la trazabilidad y facilita la recuperacion ante fallos, ya que los cambios en la infraestructura
quedan registrados en archivos de codigo. Finalmente, hace posible la automatizacion completa del
despliegue, reduciendo tiempos de configuracion y errores manuales.

Actividad 5

Imagina que trabajas en una empresa que debe desarrollar una nueva aplicacion web y tienes
la opcion de elegir entre frameworks de codigo abierto como Spring Boot, Quarkus,
Express.js o NestJS.

Investiga brevemente uno de estos frameworks y responde:
(Qué ventajas ofrece en términos de rendimiento, escalabilidad y facilidad de uso?

(Cuadles podrian ser sus desventajas o desafios al implementarlo?

[39]

EDITORIAL TUTOR FORMACION

Tu empresa esta considerando si utilizar un framework de codigo abierto o una solucion
comercial con soporte especializado. Reflexiona y responde:

(Crees que el codigo abierto es siempre la mejor opcion?

(En qué casos una empresa podria preferir una soluciéon comercial en lugar de un framework de
codigo abierto?

[40]

EDITORIAL TUTOR FORMACION

3. Criterios de seleccion de
componentes reutilizables.

Cuando se elige un componente para integrarlo en una aplicacion o infraestructura, es importante
considerar una serie de criterios que aseguren su funcionalidad, estabilidad y facilidad de
mantenimiento. No se trata solo de encontrar una herramienta que cumpla con los requisitos
técnicos, sino de asegurarse de que se adapte bien al ecosistema donde se desplegara, que sea segura
y que su rendimiento sea adecuado a la carga de trabajo esperada.

Los componentes reutilizables pueden ser bibliotecas, frameworks, modulos de software o servicios
en la nube que se integran en diferentes proyectos. Elegirlos correctamente puede ahorrar tiempo y
recursos, facilitando la evolucion y escalabilidad del sistema. Para tomar una decisiéon informada,
es util evaluar ciertos aspectos clave como la adaptabilidad, la auditabilidad, la estandarizacion y
otros factores que influyen en su comportamiento en produccion.

3.1. Adaptabilidad.

Un buen componente debe poder ajustarse a distintos entornos sin requerir grandes modificaciones.
La capacidad de adaptacion es clave en proyectos que pueden cambiar con el tiempo, ya sea por
nuevas necesidades del negocio o por actualizaciones tecnologicas.

Por ejemplo, un framework de desarrollo debe permitir la personalizacion de configuraciones para
ajustarse a distintos tipos de aplicaciones. Si un equipo usa Spring Boot para una API interna y
mas adelante necesita exponerla a clientes externos, la capacidad del framework para manejar
distintos niveles de seguridad y protocolos de comunicacion facilitara la transicion sin necesidad
de cambiar de herramienta.

También es importante evaluar si el componente puede integrarse con otras tecnologias ya
existentes en el ecosistema de la empresa. Por ejemplo, si se trabaja con bases de datos relacionales,
es recomendable elegir bibliotecas de acceso a datos que soporten distintos motores como
PostgreSQL, MySQL y SQL Server, evitando dependencias rigidas que limiten futuras
migraciones.

3.2. Auditabilidad.

La transparencia en el funcionamiento de un componente es fundamental para garantizar la
seguridad y la trazabilidad de su uso. Un componente auditable permite rastrear cambios, registrar
eventos importantes y diagnosticar problemas cuando ocurren fallos.

En sistemas criticos, como plataformas de pago o aplicaciones gubernamentales, la auditabilidad es
un requisito obligatorio. Un componente reutilizable debe ofrecer mecanismos como logs
detallados, integracion con herramientas de monitoreo y la posibilidad de registrar
transacciones o modificaciones en su configuracion.

Si un componente no permite auditar lo que sucede en su interior, su integracion en un sistema
puede generar incertidumbre y dificultar la deteccion de errores o intentos de uso indebido. Por eso,
muchas organizaciones priorizan soluciones que ofrecen registros detallados de actividad y
compatibilidad con herramientas de observabilidad como Prometheus, Grafana o ELK Stack.

[41]

EDITORIAL TUTOR FORMACION

3.3. Estandarizacion.

El uso de componentes basados en estandares facilita su integracion con otras herramientas y su
mantenimiento a largo plazo. Elegir soluciones que sigan estandares abiertos evita depender de
tecnologias propietarias que puedan quedar obsoletas o ser dificiles de migrar.

Por ejemplo, en el desarrollo de APIs, es recomendable seguir estandares como REST o GraphQL,
en lugar de optar por soluciones propietarias que puedan limitar la interoperabilidad. En bases de
datos, es preferible utilizar componentes que cumplan con SQL ANSI en lugar de formatos
especificos de un solo proveedor, lo que facilita la portabilidad de los datos entre distintos sistemas.

El uso de estandares también impacta en la compatibilidad con entornos modernos, como la
computacion en la nube. Tecnologias como OCI (Open Container Initiative) garantizan que los
contenedores sean compatibles entre diferentes plataformas, evitando bloqueos tecnoldgicos que
limiten la flexibilidad de los despliegues.

3.4. Escalabilidad y elasticidad.

Un componente reutilizable debe poder manejar aumentos en la carga de trabajo sin comprometer
su rendimiento. La escalabilidad se refiere a la capacidad de un sistema para aumentar su capacidad
agregando mas recursos, mientras que la elasticidad implica la capacidad de ajustar
automaticamente los recursos segun la demanda.

Por ejemplo, un servidor de bases de datos como MongoDB debe permitir escalar verticalmente
(aumentando la capacidad del servidor) o escalar horizontalmente (afiadiendo mas nodos a un
cluster). Si un componente no es escalable, su rendimiento puede degradarse a medida que crece el
volumen de usuarios o datos.

La elasticidad es especialmente importante en entornos cloud, donde los recursos pueden asignarse
dindmicamente. Un servicio como AWS Lambda permite ejecutar funciones bajo demanda,
escalando automaticamente sin intervencion manual, lo que lo hace ideal para cargas de trabajo
variables.

3.5. Rendimiento.

El rendimiento de un componente impacta directamente en la eficiencia de todo el sistema. Un
componente mal optimizado puede generar cuellos de botella que afecten la velocidad de respuesta
y el consumo de recursos.

Para evaluar el rendimiento de un componente, es recomendable realizar pruebas de carga y revisar
métricas como latencia, throughput y consumo de CPU y memoria. En bases de datos, se puede
analizar la eficiencia de los indices y la velocidad de ejecucion de consultas. En aplicaciones web,
es util medir el tiempo de respuesta de las API y la capacidad de procesamiento simultaneo de
solicitudes.

Herramientas como JMeter, Locust o k6 permiten simular trafico real y evaluar el comportamiento
de los componentes bajo distintas condiciones de carga.

[42]

EDITORIAL TUTOR FORMACION

meter.apache.org/download jmeter.cqi

f pacHE

Acerca de
o Vision general
+ Licencia

Descargar
o Descargar Lanzamientos
+ Notas

Documentacion
Comenzar
anual de usuario
mendadas
Referencia de componentes
Referencia de funciones
Referencia de propiedades
Histortal de cambros

TMeter Wiki

APACHE

JMeter”

Descargar Apache JMeter el

i

Te recomendamos que utilices un espejo para descargar nuestra version compilaciones, pero debe verificar |a infegridad de los
archivos descargados usando firmas descargadas de nuestra pagina principal directorios de distribucion. Es posible que las versiones
recientes (48 horas) adn no lo hayan hecho estar disponible en todos los espejos

Actualmente estd utilizando https:/idicdn.apache.org/ Si usted Si encuentra un problema con este espejo, seleccione otro espejo. Si
todos los espejos estan fallando, hay espejos de respaldo (al final de la lista de espejos) que deben ser disponible.

Otros espejos: | https://dlcdn.apache.org/ v|[Cambio |

El enlace KEYS se vincula a las claves de firma de cddigo utilizadas para firmar el producto. El enlace PGP descarga la firma
compatible con OpenPGP desde nuestro sitio principal. El enlace SHA-512 descarga la suma de comprobacion sha512 desde el sitio
principal. Verifique la integridad del archivo descargado.

Para obtener mas informacién sobre Apache JMeter, consulte el sitio de Apache JMeter.

LLAVES

Preguntas frecuentes (Wiki

3.6. Consumo de recursos.

Un componente eficiente debe aprovechar los recursos del sistema sin desperdiciar memoria, CPU
o ancho de banda. En entornos cloud, donde el uso de recursos esta directamente relacionado con
el coste, elegir componentes optimizados puede generar ahorros significativos.

Por ejemplo, algunos frameworks de backend como Quarkus o Micronaut estdn disefiados para
consumir menos memoria que alternativas mas pesadas como Spring Boot, lo que los hace ideales
para entornos con restricciones de hardware o para ejecutar aplicaciones en contenedores de tamafio
reducido.

Es recomendable revisar los requisitos minimos de cada componente y comparar su consumo de
recursos en pruebas reales antes de integrarlo en un sistema.

3.7. Seguridad.

La seguridad es un aspecto clave en la seleccion de componentes, especialmente en aplicaciones
que manejan datos sensibles o que estan expuestas a Internet. Un componente inseguro puede abrir
la puerta a vulnerabilidades que comprometan todo el sistema.

Al evaluar un componente, es importante revisar si sigue buenas practicas de seguridad, como
cifrado de datos, control de acceso y proteccidon contra ataques conocidos. También es
recomendable verificar si recibe actualizaciones de seguridad frecuentes y si tiene una comunidad
activa que monitorea y soluciona vulnerabilidades.

En entornos empresariales, muchas organizaciones prefieren componentes que cumplen con
certificaciones de seguridad, como ISO 27001 o SOC 2, que garantizan que han sido evaluados
bajo estandares rigurosos:

[43]

EDITORIAL TUTOR FORMACION

() hitpsy//www.iso.org/standard/2700

AT
Normas Sectores Acerca de ISO Perspectivas y noticias Participacion Tienda Buscar Q)=

ISO/IEC 27001:2022 ISO/IEC 27001:2022
Seguridad de la informacidn, - 1 3 2

ciberseguridad y proteccion de la
privacidad — Sistemas de gestion de la
seguridad de la informacion — Requisitos

Idioma

Ingles ~

Formato
© PDF + ePub
PDF + ePub + Redline

Publicado (Edicion 3, 2022)
== > Esta norma tiene 1 enmienda.

Papel

Aiiadir a la cesta
onvierte francos su tu moneda

Leer ejemplo

3.8. Caracteristicas de mantenimiento 'y
actualizacion.

Un componente bien mantenido reduce los riesgos de quedarse obsoleto o generar problemas de
compatibilidad en el futuro. Antes de elegir un componente, es util revisar su historial de
actualizaciones y si cuenta con documentacion clara y soporte activo.

Un software que no recibe mantenimiento puede volverse incompatible con versiones mas recientes
del sistema operativo o de otras herramientas. En cambio, un componente con una comunidad activa
o respaldo de una empresa garantiza que recibira mejoras y correcciones de seguridad en el tiempo.

3.9. Compatibilidad con entornos cloud vy
contenedores.

Con el crecimiento de la computacion en la nube y el uso de contenedores, es importante que los
componentes seleccionados sean compatibles con estos entornos.

Por ejemplo, un sistema de bases de datos como PostgreSQL es altamente compatible con
despliegues en contenedores y puede ejecutarse en servicios como Amazon RDS o Google Cloud
SQL, facilitando su integracion en arquitecturas modernas.

Elegir componentes disefiados para funcionar en entornos escalables y con soporte para
orquestadores como Kubernetes permite mantener la flexibilidad y facilitar despliegues
automatizados.

Actividad 6

|| Lee cada afirmacion y marca si es verdadera (V) o falsa (F). Justifica tu

—_——
respuesta en caso de que sea falsa.

° Un componente reutilizable debe adaptarse a distintos entornos sin
necesidad de realizar modificaciones.

[44]

EDITORIAL TUTOR FORMACION

e [a auditabilidad de un componente no es importante si se utiliza en aplicaciones internas
sin acceso externo.

e Elegir componentes basados en estandares abiertos facilita la integracion y el
mantenimiento a largo plazo.

e La escalabilidad y la elasticidad son términos equivalentes en el contexto de la seleccion
de componentes.

e Un componente con alto consumo de CPU y memoria siempre es la mejor opcion porque
garantiza mejor rendimiento.

Lee cada pista y escribe qué criterio de seleccion de componentes esta describiendo.
Adivinanza 1:

Si me usas, puedes ver,

qué hizo el codigo ayer.

Errores, cambios y mas,

te ayudo a rastrear.

Adivinanza 2:

Si tu software no es ligero,

y consume sin parar,

cuando escale tu proyecto,
problemas te va a causar.
Adivinanza 3:

Si tu sistema quiere crecer,

mas nodos debe tener,

y si los recursos han cambiado,
ajustarme esta asegurado.
Adivinanza 4:

Con REST o con GraphQL,
mejor es si sigo un papel,

para que todos me entiendan bien,
y no cambien su parecer.
Adivinanza 5:

Si el software quieres cuidar,

de ataques me debes blindar,
cifrado y permisos bien debes usar,

si a hackers no quieres invitar.

[45]

EDITORIAL TUTOR FORMACION

4. Proceso de seleccion de
componentes.

Elegir los componentes adecuados para un sistema de software no es solo cuestion de encontrar el
que mejor se ajuste a las necesidades inmediatas. También es importante evaluar su integracion con
otros sistemas, su rendimiento a largo plazo y su compatibilidad con practicas de desarrollo
modernas. Un buen proceso de seleccion garantiza que los componentes sean reutilizables,
escalables y seguros, facilitando su mantenimiento y actualizacién con el tiempo.

El proceso de seleccion de componentes no es algo que se haga una sola vez y se olvide. A medida
que las aplicaciones evolucionan, pueden surgir nuevas necesidades que requieran cambios en los
componentes utilizados. Por eso, es fundamental seguir un enfoque estructurado que incluya
evaluacion de requisitos, integracion, pruebas, mantenimiento y actualizacion continua.

4.1. Evaluacion de componentes segun requisitos.

Antes de incorporar un componente en un sistema, es necesario analizar si cumple con los requisitos
técnicos y funcionales del proyecto. Esto implica evaluar aspectos como compatibilidad con la
arquitectura existente, facilidad de integracion, rendimiento esperado y nivel de soporte disponible.

Por ejemplo, si se necesita un sistema de mensajeria entre microservicios, una de las primeras
preguntas seria si conviene usar RabbitMQ, Apache Kafka o NATS. Para tomar una decision
informada, se pueden comparar caracteristicas como el soporte para colas persistentes, el consumo
de recursos y la facilidad de escalabilidad en entornos cloud.

También es importante considerar el grado de madurez del componente. Si se trata de un software
de codigo abierto, se debe revisar la frecuencia de actualizaciones y la actividad de su comunidad.
Un componente sin mantenimiento reciente puede convertirse en un problema de seguridad o
compatibilidad en el futuro.

4.2. Diseno y codificacion (codigo de enlace).

Una vez seleccionado el componente, hay que asegurarse de que pueda integrarse correctamente en
el sistema. Esto se hace mediante el disefio de cédigo de enlace, que permite la comunicacion entre
el nuevo componente y los demas elementos del software.

4.2.1. [Enlace de componentes con otros sistemas.
Cuando un componente no ha sido disefiado especificamente para el sistema en el que se va a usar,
es posible que sea necesario escribir codigo que actiie como intermediario. Este codigo de enlace
puede ser una API, un adaptador o un conector que permita la comunicacion entre distintas partes
del software sin modificar su estructura interna.

Por ejemplo, si se necesita integrar un servicio de autenticacion externo como OAuth 2.0 o OpenlD
Connect, es posible que se requiera un middleware que traduzca los tokens de autenticacion en un
formato compatible con la aplicacion.

[46]

EDITORIAL TUTOR FORMACION

4.2.2. Integracion.
La integracion de un componente implica conectarlo con otros sistemas y también asegurarse de
que interactue de forma eficiente y sin generar conflictos. Una buena practica es realizar pruebas
de integracion antes de implementarlo en produccidn, para detectar posibles incompatibilidades o
errores de comunicacion.

En entornos donde se usan microservicios, herramientas como Istio o Linkerd pueden facilitar la
integracion mediante la gestion de la comunicacidn entre servicios, aplicando control de trafico y
balanceo de carga de manera transparente.

4.2.3. Configuracion.
Después de integrar el componente, es necesario configurarlo adecuadamente para que funcione
segun los requisitos del sistema. Dependiendo del tipo de componente, la configuracion puede
realizarse mediante archivos YAML, variables de entorno o ajustes dentro de una plataforma de
administracion.

Un caso tipico es la configuracion de bases de datos como PostgreSQL o MySQL, donde se pueden
ajustar parametros como el numero de conexiones simultaneas, la memoria caché utilizada o las
politicas de seguridad para proteger los datos.

4.3. Automatizacion de pruebas con CI/CD
(Jenkins, GitHub Actions, GitLab CI/CD).

Para garantizar que un componente funciona correctamente en el sistema, es recomendable
automatizar su prueba dentro del flujo de integracion y entrega continua (CI/CD). Herramientas
como Jenkins, GitHub Actions y GitLab CI/CD permiten definir pipelines de pruebas que
verifican el correcto funcionamiento del componente en cada nueva version del software.

Por ejemplo, si se integra una nueva libreria en un backend basado en Node.js, se pueden configurar
pruebas automatizadas con Jest 0 Mocha, de modo que cada vez que se haga un cambio en el
codigo, se ejecuten test que validen su compatibilidad con el sistema.

4.4. Deteccion de fallos.

Un buen componente no solo debe funcionar bien en condiciones normales, sino que también debe
ser capaz de manejar errores de manera eficiente. Para detectar fallos, se pueden emplear técnicas
como pruebas de carga, simulacion de fallos y monitorizacion en tiempo real.

Por ejemplo, en sistemas distribuidos, herramientas como Chaos Monkey de Netflix permiten
probar la resiliencia del sistema desconectando aleatoriamente servicios y observando cémo
reacciona la infraestructura ante fallos inesperados.

4.5. Mantenimiento y gestion de configuraciones.

Los componentes seleccionados deben poder mantenerse y actualizarse sin generar problemas en
el sistema. Para ello, es recomendable gestionar su configuracion de manera centralizada utilizando
herramientas como Ansible, Puppet o Terraform, que permiten definir la configuracion de los
componentes como codigo, asegurando que todos los entornos tengan ajustes consistentes.

[47]

EDITORIAL TUTOR FORMACION

En sistemas modernos, los gestores de configuracion también facilitan la actualizacion de software
sin necesidad de intervencion manual, reduciendo el riesgo de errores humanos y asegurando
despliegues mas confiables.

4.6. Actualizacion de componentes en entornos
DevOps (Rolling Updates, Canary Releases,
Blue-Green Deployments).

Actualizar un componente en un sistema en produccion puede ser riesgoso si no se hace
correctamente. Para minimizar el impacto de los cambios, en entornos DevOps se utilizan
estrategias de despliegue que permiten introducir nuevas versiones de forma gradual:

¢ Rolling Updates: Se actualizan los componentes poco a poco, reemplazando las
versiones antiguas por las nuevas sin detener el sistema.

o Canary Releases: Se despliega la nueva version solo a un pequefio grupo de usuarios
para detectar posibles errores antes de un lanzamiento completo.

e Blue-Green Deployments: Se mantienen dos versiones del sistema en paralelo (una
activa y otra en espera), permitiendo hacer cambios sin afectar la disponibilidad del
servicio.

Estas estrategias permiten actualizar componentes de manera segura, evitando interrupciones y
reduciendo el impacto de posibles fallos en produccion.

4.7. Métodos de seleccion de uso comun.

Existen distintas metodologias para seleccionar componentes de manera eficiente y estructurada.

4.7.1. DevOps y metodologias agiles.
El enfoque DevOps y las metodologias agiles promueven la seleccion de componentes basandose
en la capacidad de automatizacion, integracion y entrega continua. En lugar de elegir componentes
de manera aislada, se evalia como encajan dentro del flujo de desarrollo y despliegue del sistema.

Por ejemplo, en una empresa que trabaja con Scrum, se puede definir un criterio de seleccion de
componentes dentro del backlog del proyecto, asegurando que cada eleccion tenga en cuenta la
compatibilidad con las herramientas de CI/CD y la infraestructura de despliegue.

4.7.2. SAST y DAST para evaluacion de seguridad en

components.

La seguridad es un aspecto clave en la seleccion de componentes. Para evaluar posibles
vulnerabilidades, se utilizan técnicas como:

o SAST (Static Application Security Testing): Analiza el codigo fuente en busca de
vulnerabilidades antes de ejecutarlo. Herramientas como SonarQube o Checkmarx
permiten detectar errores de seguridad en las dependencias de un proyecto.

o DAST (Dynamic Application Security Testing): Evalia la seguridad del componente
en tiempo de ejecucion, probando su comportamiento ante ataques simulados.

[48]

EDITORIAL TUTOR FORMACION

Utilizar estas metodologias ayuda a garantizar que los componentes seleccionados sean seguros y
no introduzcan riesgos en el sistema.

Actividad 7

Responde a las siguientes preguntas en un breve parrafo, argumentando tu respuesta con
ejemplos o experiencias previas.

Al elegir un nuevo componente para un sistema de software, ;qué crees que es mas importante: su
rendimiento o su seguridad? Justifica tu respuesta considerando casos en los que un aspecto podria
ser mas prioritario que el otro.

Si una empresa quiere modernizar su infraestructura, pero ain depende de componentes antiguos,
(qué pasos crees que deberia seguir para asegurar una transicion efectiva? Explica qué factores
deberian evaluar antes de hacer el cambio.

Las metodologias agiles y DevOps han cambiado la forma en que se seleccionan y actualizan los
componentes de software. ;Como crees que este enfoque ha mejorado la calidad y estabilidad de
los sistemas?

Imagina que un equipo de desarrollo esta evaluando dos componentes para integrar en su sistema:
uno tiene mejor compatibilidad con su infraestructura actual, pero el otro tiene mas soporte y
actualizaciones frecuentes. ;Cual crees que deberian elegir y por qué?

Los errores en la seleccion de componentes pueden generar problemas en la escalabilidad y
mantenimiento de un sistema. ;Puedes pensar en un ejemplo donde una mala eleccién de un
componente podria afectar a largo plazo el funcionamiento de una aplicacion?

[49]

EDITORIAL TUTOR FORMACION

5. Prueba de autoevaluacion.

;Qué tipo de componente de software suele ofrecer soporte y estabilidad, pero puede tener
restricciones de personalizacion?

a) Codigo abierto
b) Comercial (COTS)

¢) Frameworks de desarrollo

¢;Cudal de estos frameworks de codigo abierto es utilizado en el desarrollo de aplicaciones con
Java?

a) Spring Boot
b) Express.js
¢) Nginx

¢ Qué ventaja ofrece un componente de codigo abierto en comparacion con uno comercial?
a) Mayor flexibilidad y posibilidad de modificacion
b) Siempre incluye soporte técnico garantizado

¢) No requiere mantenimiento por parte de la comunidad

¢ Cudal de los siguientes es un factor clave al seleccionar un componente reutilizable?
a) La disponibilidad de emojis en la documentacion
b) La compatibilidad con entornos cloud y contenedores

¢) Que tenga una interfaz grdfica atractiva

(Qué herramienta permite definir infraestructura como codigo para gestionar la configuracion y
despliegue de componentes?

a) Terraform
b) PostgreSQOL
¢) GitHub

Un componente permite su modificacion y adaptacion libremente sin pagar licencias.

Un software COTS es un componente que se compra a un proveedor y generalmente no se
puede modificar.

es un framework de Node.js utilizado para desarrollar APIs y aplicaciones web.

La herramienta permite gestionar la infraestructura de manera declarativa, automatizando
la creacion y configuracion de recursos.

Un buen criterio de seleccion de componentes es que tenga alta , permitiendo su adaptacion
a diferentes entornos y necesidades.

[50]

EDITORIAL TUTOR FORMACION

Control de calidad de
componentes

|

-

——

-
L
e
o
& oy
e
-
e
-

[51]

