
 EDITORIAL TUTOR FORMACIÓN

[89]

7. Herramientas para el desarrollo

de componentes.
Cuando se trabaja con desarrollo basado en componentes, no basta con escribir código. También es

necesario contar con las herramientas adecuadas para programar, probar, depurar e integrar los

componentes dentro de una aplicación más grande. Estas herramientas facilitan el trabajo de los

desarrolladores y permiten que los proyectos sean más organizados y eficientes.

Algunas de las más importantes son los entornos integrados de desarrollo (IDE), los sistemas de

configuración e instalación de herramientas y las plataformas para la gestión del ciclo de vida

del software. Cada una de estas herramientas cumple un papel clave en el proceso de desarrollo,

desde la escritura del código hasta la implementación final del software.

Herramientas clave en el desarrollo de componentes.

Los entornos de desarrollo integrado (IDE) son programas que ayudan a los desarrolladores a

escribir y depurar código de forma más rápida y organizada. Algunos de los más conocidos son

IntelliJ IDEA, ideal para proyectos en Java; Visual Studio, muy utilizado para desarrollar en

.NET; Eclipse, otra opción popular para Java y otros lenguajes; y Visual Studio Code, una

alternativa más ligera y flexible compatible con muchas tecnologías.

Por otro lado, los sistemas de configuración e instalación permiten gestionar cómo se instalan y

despliegan las aplicaciones en distintos entornos. Herramientas como Ansible automatizan la

configuración de servidores y aplicaciones, Helm facilita el despliegue de aplicaciones en

Kubernetes, Docker permite empaquetar software en contenedores portátiles, y Kubernetes ayuda

a administrar esos contenedores en sistemas distribuidos.

Además, para mantener un desarrollo fluido, es clave contar con herramientas para el ciclo de vida

del software. GitHub, GitLab y Git permiten gestionar el código y colaborar en equipo, mientras

que Jenkins, Azure DevOps y CircleCI se encargan de automatizar pruebas y despliegues, lo que

ahorra tiempo y reduce errores en el proceso de desarrollo.

 EDITORIAL TUTOR FORMACIÓN

[90]

7.1. Entornos integrados de desarrollo de

componentes.
Un entorno de desarrollo integrado (IDE) es un software que proporciona todo lo necesario para

programar en un solo lugar. En un IDE, los desarrolladores pueden escribir código, compilarlo,

ejecutarlo, depurarlo y gestionar dependencias sin necesidad de usar múltiples herramientas

separadas.

En el desarrollo de componentes, un buen IDE permite programar y también ayuda a organizar el

proyecto, administrar bibliotecas y automatizar tareas repetitivas. Algunos de los más utilizados

hoy en día son:

• IntelliJ IDEA y Eclipse: muy populares en el desarrollo con Java y frameworks como

Spring Boot.

 EDITORIAL TUTOR FORMACIÓN

[91]

• Visual Studio y Visual Studio Code: usados en el ecosistema .NET, pero también

compatibles con otros lenguajes como JavaScript, Python y Go.

 Saber más
Visual Studio Code (VS Code) es uno de los editores más populares entre los desarrolladores web.

Ofrece una excelente integración con herramientas de desarrollo web y es altamente personalizable

mediante extensiones. Es un editor de código fuente desarrollado por Microsoft. Es gratuito, de

código abierto y compatible con Windows, macOS y Linux.

A continuación, se presentan los pasos para instalar este editor y algunas de sus extensiones:

1. Ve al sitio oficial de Visual Studio Code en tu navegador web.

2. Haz clic en el botón de descarga para tu sistema operativo (Windows, MacOS, Linux):

 EDITORIAL TUTOR FORMACIÓN

[92]

3. Una vez descargado el archivo, ábrelo para iniciar el proceso de instalación.

4. Sigue las instrucciones del instalador, que incluirán aceptar los términos de servicio y elegir

la ubicación de instalación.

5. Una vez completada la instalación, puedes abrir Visual Studio Code:

6. Haz clic en el icono de extensiones en la barra lateral izquierda (o presiona Ctrl+Shift+X).

7. En la barra de búsqueda en la parte superior, escribe el nombre de la extensión que deseas

instalar. Por ejemplo, podrías buscar “Live Server”, "HTML Boilerplate" o "Prettier - Code

formatter":

8. En los resultados de la búsqueda, haz clic en el botón “Instalar” para la extensión que

deseas:

 EDITORIAL TUTOR FORMACIÓN

[93]

Nota

•Live Server: Esta extensión permite iniciar un servidor de desarrollo local
con la funcionalidad de recarga en vivo para páginas estáticas y dinámicas.
Facilita la previsualización de páginas web en una ventana del navegador en
tiempo real, reflejando automáticamente los cambios realizados en el
código sin necesidad de recargar la página. Para utilizarla, basta con abrir
un archivo HTML y hacer clic en "Go Live" desde la barra de estado para
encender o apagar el servidor.

Nota

•HTML Boilerplate: Esta herramienta genera una estructura básica de
HTML5. Para emplearla, se debe escribir ‘html5-boilerplate’ en un archivo
HTML y seleccionar el fragmento correspondiente de la lista desplegable de
autocompletado para obtener la estructura HTML5. Alternativamente, se
puede usar el atajo de teclado “!” en un archivo HTML y luego presionar
“Tab” o “Enter” para generar el esqueleto HTML.

 EDITORIAL TUTOR FORMACIÓN

[94]

9. Una vez instaladas las extensiones, reinicia Visual Studio Code para que los cambios surtan

efecto.

Nota

•Prettier - Code Formatter: Prettier es un formateador de código que aplica
un estilo consistente al analizar y reimprimir el código según sus propias
reglas, considerando la longitud máxima de línea y envolviendo el código
cuando es necesario. Soporta una variedad de lenguajes como JavaScript,
TypeScript, CSS, HTML, entre otros. Para asegurar su uso sobre otras
extensiones, es necesario configurarlo como el formateador predeterminado
en la configuración de VS Code.

 EDITORIAL TUTOR FORMACIÓN

[95]

• PyCharm: especializado en Python, útil para desarrollar componentes en frameworks

como Django o FastAPI.

• WebStorm: optimizado para JavaScript y TypeScript, muy usado en el desarrollo de

componentes frontend con React, Angular y Vue.js.

Un buen IDE puede hacer una gran diferencia en la productividad del desarrollador, ya que incluye

características como autocompletado de código, integración con herramientas de control de

versiones (Git) y depuración avanzada.

 EDITORIAL TUTOR FORMACIÓN

[96]

7.2. Configuración e instalación de herramientas

de uso común.
Dependiendo del lenguaje y la plataforma en la que se trabaje, es necesario instalar herramientas

específicas que faciliten el desarrollo de componentes. Entre los entornos más utilizados están Java

y .NET, que cuentan con ecosistemas completos para la creación de software modular.

7.2.1. Entorno Java.
Para desarrollar componentes en Java, es fundamental configurar un entorno de desarrollo

adecuado. Esto incluye:

• Java Development Kit (JDK): el conjunto de herramientas necesario para compilar y

ejecutar aplicaciones en Java.

• Maven y Gradle: sistemas de gestión de dependencias y automatización de

compilación.

• Spring Boot: un framework muy utilizado para crear aplicaciones basadas en

componentes, especialmente en el desarrollo de microservicios.

• IntelliJ IDEA o Eclipse: los IDE más usados en el ecosistema Java.

A continuación, se explica paso por paso cómo configurar el entorno de desarrollo para trabajar con

Java y crear aplicaciones modulares con Spring Boot:

Instalar el JDK (Java Development Kit)

El JDK es lo primero que necesitas, ya que incluye todo lo necesario para compilar y ejecutar

programas en Java.

1. Visita la página oficial de Oracle o Adoptium para descargar el JDK:

1. Oracle JDK:

https://www.oracle.com/java/technologies/downloads/?er=221886#jdk23-

windows

 EDITORIAL TUTOR FORMACIÓN

[97]

2. OpenJDK (Adoptium): https://adoptium.net/es/

2. Descarga el instalador según tu sistema operativo (Windows, macOS o Linux):

3. Ejecuta el instalador y sigue las instrucciones de instalación:

 EDITORIAL TUTOR FORMACIÓN

[98]

 EDITORIAL TUTOR FORMACIÓN

[99]

4. Para verificar que la instalación fue correcta, abre una terminal o consola y escribe:

java -version

Si ves un mensaje con la versión instalada, significa que todo está listo:

Instalar Maven

1. Descarga Maven desde su página oficial: https://maven.apache.org/download.cgi

2. Extrae el contenido del archivo descargado en una ubicación de tu elección:

 EDITORIAL TUTOR FORMACIÓN

[100]

3. Configura la variable de entorno MAVEN_HOME apuntando a la carpeta donde extrajiste

Maven. Para configurar Maven en tu sistema, sigue estos pasos:

o Presiona Win + R, escribe sysdm.cpl y presiona Enter:

 EDITORIAL TUTOR FORMACIÓN

[101]

o Ve a la pestaña "Opciones avanzadas" y haz clic en "Variables de entorno":

 EDITORIAL TUTOR FORMACIÓN

[102]

o En la sección de Variables del sistema, haz clic en "Nueva".

o En Nombre de la variable, escribe: MAVEN_HOME.

o En Valor de la variable, ingresa la ruta donde extrajiste Maven:

o Haz clic en Aceptar.

4. Agrega la carpeta bin de Maven al PATH del sistema para poder ejecutarlo desde la

terminal. Para ello:

Edita la variable Path

o En la misma ventana de Variables de entorno, busca la variable llamada Path

en la sección Variables del sistema y selecciona Editar:

 EDITORIAL TUTOR FORMACIÓN

[103]

Añade la ruta de Maven

o Haz clic en "Nuevo" y agrega la siguiente ruta:

C:\Users\beatr\Downloads\apache-maven-3.9.9-bin\bin

 EDITORIAL TUTOR FORMACIÓN

[104]

o Asegúrate de que la ruta esté correctamente escrita y presiona Aceptar.

5. Para comprobar que está funcionando, abre la terminal y ejecuta:

mvn -version

Si ves información sobre la versión instalada, ya está listo para usarse.

Instalar Gradle (alternativa a Maven)

1. Descarga Gradle desde https://gradle.org/install/.

2. Extrae los archivos en una ubicación de tu elección.

3. Configura la variable de entorno GRADLE_HOME y agrega su carpeta bin al PATH del

sistema.

4. Para verificar la instalación, abre la terminal y ejecuta:

gradle -v

Si ves la versión de Gradle, la instalación fue exitosa.

 EDITORIAL TUTOR FORMACIÓN

[105]

Instalar Spring Boot

1. Instala Maven o Gradle, ya que Spring Boot se gestiona a través de estas herramientas.

2. Descarga Spring Boot CLI desde https://spring.io/projects/spring-boot.

3. Extrae los archivos y configura la variable de entorno SPRING_HOME apuntando a la

carpeta de Spring Boot.

4. Agrega la carpeta bin de Spring Boot al PATH del sistema.

5. Para verificar la instalación, ejecuta en la terminal:

spring --version

Si ves un número de versión, significa que está funcionando correctamente.

Instalar IntelliJ IDEA

1. Ve a la página de JetBrains: https://www.jetbrains.com/idea/download/.

2. Descarga la versión Community (gratuita) o la versión Ultimate (de pago, con más

funciones).

3. Ejecuta el instalador y sigue los pasos para completar la instalación.

4. Una vez instalado, abre IntelliJ IDEA y configura el JDK en File > Project Structure >

SDKs.

Instalar Eclipse (alternativa a IntelliJ IDEA)

1. Descarga Eclipse desde https://www.eclipse.org/downloads/.

2. Ejecuta el instalador y elige la versión Eclipse IDE for Java Developers.

3. Completa la instalación siguiendo las instrucciones.

4. Abre Eclipse y configura el JDK en Window > Preferences > Java > Installed JREs.

En proyectos modernos, muchas aplicaciones Java se ejecutan en contenedores Docker, lo que

permite empaquetar componentes junto con sus dependencias y desplegarlos en cualquier servidor

sin preocuparse por configuraciones locales. Un contenedor es un entorno ligero y aislado que

incluye todo lo necesario para ejecutar la aplicación, como el código, las bibliotecas y las

configuraciones requeridas.

¿Por qué usar Docker en aplicaciones Java?

Al empaquetar la aplicación junto con sus dependencias en un contenedor, se garantiza que

funcionará igual en cualquier servidor sin importar la configuración del sistema operativo o las

versiones de Java instaladas.

Además, la misma imagen de Docker puede ejecutarse en cualquier entorno, ya sea en una máquina

local, un servidor en la nube o un clúster Kubernetes.

Con Docker, se pueden automatizar despliegues en diferentes entornos (desarrollo, pruebas y

producción) sin necesidad de configurar cada servidor manualmente.

Por ejemplo, si tienes una aplicación Java con Spring Boot, en lugar de ejecutarla manualmente con

java -jar, puedes crear un archivo Dockerfile para empaquetarla y ejecutarla en un contenedor:

Usa una imagen base con Java 17

FROM openjdk:17-jdk-slim

 EDITORIAL TUTOR FORMACIÓN

[106]

Copia el archivo JAR de la aplicación al contenedor

COPY target/mi-aplicacion.jar /app.jar

Expone el puerto en el que se ejecutará la aplicación

EXPOSE 8080

Comando para ejecutar la aplicación dentro del contenedor

CMD ["java", "-jar", "/app.jar"]

Luego, con Docker instalado, puedes construir y ejecutar el contenedor:

sh

docker build -t mi-aplicacion .

docker run -p 8080:8080 mi-aplicacion

Esto permite que la aplicación se ejecute en cualquier servidor con Docker sin necesidad de instalar

Java manualmente, asegurando que siempre funcione con la misma configuración.

7.2.2. Entorno .NET.
En el ecosistema .NET, el entorno de desarrollo también requiere ciertas herramientas específicas:

• .NET SDK: el kit de desarrollo necesario para programar aplicaciones con C#.

Actualmente, .NET 8 es la versión más recomendada para nuevos proyectos.

• Visual Studio: el IDE más completo para desarrollar aplicaciones .NET, aunque Visual

Studio Code también es una opción ligera y potente.

• NuGet: el gestor de paquetes de .NET, similar a Maven en Java.

• Blazor y MAUI: frameworks modernos para desarrollar aplicaciones web y móviles

basadas en componentes dentro del ecosistema .NET.

Como en Java, muchas aplicaciones .NET también se ejecutan en contenedores Docker y pueden

desplegarse en plataformas como Azure y AWS.

 EDITORIAL TUTOR FORMACIÓN

[107]

Actividad 7

Instala Visual Studio Code (VS Code), configura algunas extensiones útiles y crea un

componente sencillo en JavaScript o Python, reforzando así el uso de herramientas para el

desarrollo basado en componentes.

Parte 1: Instalación de Visual Studio Code

Descarga Visual Studio Code desde su sitio oficial: https://code.visualstudio.com/

Instala el programa siguiendo las instrucciones para tu sistema operativo (Windows, macOS o

Linux).

Abre Visual Studio Code una vez completada la instalación.

Parte 2: Instalación de extensiones

Haz clic en el icono de extensiones en la barra lateral izquierda o presiona Ctrl + Shift + X.

Busca e instala las siguientes extensiones según el lenguaje que vayas a usar. Para JavaScript/React:

"Live Server" y "ES7+ React/Redux/React-Native snippets". Para Python: "Python" y "Pylance".

Reinicia VS Code para aplicar los cambios.

Parte 3: Creación de un componente simple

Elige uno de los siguientes ejercicios y sigue los pasos en Visual Studio Code.

Opción 1 (JavaScript - React): Crear un componente de botón

Crea una nueva carpeta y ábrela en VS Code.

Dentro de la carpeta, crea un archivo llamado Boton.js y copia el siguiente código:

const Boton = ({ texto }) => {

 return <button style={{ padding: "10px", fontSize: "16px"

}}>{texto}</button>;

};

export default Boton;

En otro archivo App.js, importa y usa el componente:

import Boton from "./Boton";

function App() {

 return (

 <div>

 <h1>Mi Aplicación con Componentes</h1>

 <Boton texto="Haz clic aquí" />

https://code.visualstudio.com/

 EDITORIAL TUTOR FORMACIÓN

[108]

 </div>

);

}

export default App;

Ejecuta el proyecto con npm start (si tienes un entorno React configurado).

Opción 2 (Python - Uso de Clases para Componentes)

Crea una nueva carpeta y ábrela en VS Code.

Dentro de la carpeta, crea un archivo llamado componente.py y copia el siguiente código:

class Componente:

 def __init__(self, nombre):

 self.nombre = nombre

 def mostrar(self):

 print(f"Este es un componente llamado {self.nombre}")

Creación de un componente

mi_componente = Componente("Botón de Inicio")

mi_componente.mostrar()

Guarda los cambios y ejecuta el script presionando F5 o ejecutando en la terminal:

python componente.py

7.3. Gestión del ciclo de vida en el desarrollo de

componentes mediante herramientas de uso

común.
Cuando desarrollamos software basado en componentes, no basta con escribir código y esperar que

funcione. Cada componente tiene un ciclo de vida, desde que se diseña hasta que se pone en

producción, se actualiza y se mantiene a lo largo del tiempo.

 EDITORIAL TUTOR FORMACIÓN

[109]

Esquema del ciclo de vida de un componente de software:

El primer paso es registrar el componente en un repositorio. Esto significa publicarlo en un gestor

de paquetes como NPM (para JavaScript), Maven (para Java) o NuGet (para .NET). Esto permite

que otros desarrolladores puedan acceder a él fácilmente e integrarlo en sus proyectos.

Una vez publicado, el componente puede ser reutilizado en diferentes proyectos. Es decir, otros

desarrolladores pueden descargarlo e incorporarlo en sus aplicaciones sin necesidad de volver a

escribir código desde cero. Esto ahorra tiempo y esfuerzo, además de garantizar consistencia en el

desarrollo de software.

 EDITORIAL TUTOR FORMACIÓN

[110]

Para que un componente sea realmente útil, necesita una buena documentación y un sistema de

versionado. Esto significa definir los metadatos, como el nombre, la descripción, las dependencias

necesarias y la forma correcta de usarlo. También es importante que tenga un sistema de versiones

para que los usuarios puedan saber qué cambios se han hecho y si hay nuevas actualizaciones.

Cuando un componente se va a utilizar en una aplicación, debe ser instalado e integrado con otros

módulos. Esto puede hacerse manualmente o de forma automatizada con herramientas de gestión

de dependencias. Aquí es donde el componente empieza a desempeñar su función dentro de un

software más grande.

Antes de considerarlo finalizado, el componente pasa por un proceso de pruebas y depuración.

Esto significa validar que funciona correctamente en distintos entornos y corregir cualquier error

que pueda aparecer. Si se encuentran fallos o se identifican mejoras, se vuelve a actualizar y el ciclo

comienza de nuevo, asegurando así su calidad y evolución constante.

Si este proceso no se gestiona bien, pueden aparecer problemas como errores difíciles de rastrear,

incompatibilidades con otros módulos o dificultades para reutilizar el código. Para evitar estos

problemas, se utilizan herramientas especializadas que permiten organizar, probar, instalar y

mantener los componentes de manera eficiente. Vamos a ver algunos aspectos clave en la gestión

del ciclo de vida de los componentes y cómo se utilizan en la práctica.

7.3.1. Uso de repositorios de componentes. Registro de

componentes.
Uno de los pilares del desarrollo basado en componentes es la reutilización. Pero para que esto

funcione bien, los componentes deben estar organizados en un lugar donde los desarrolladores

puedan acceder a ellos fácilmente. Para esto existen los repositorios de componentes, que son

plataformas donde se almacenan y gestionan los módulos reutilizables.

Por ejemplo, en Java se utilizan repositorios como Maven Central o JFrog Artifactory, en .NET

se usa NuGet, y en JavaScript es muy común encontrar paquetes en npm. Estos sistemas permiten

que cualquier desarrollador descargue e integre un componente en su aplicación sin necesidad de

programarlo desde cero.

Además, en entornos empresariales o proyectos más grandes, suele ser necesario un registro de

componentes interno, donde se almacenan módulos desarrollados dentro de la empresa y que no

deben ser accesibles públicamente. Herramientas como Sonatype Nexus o JFrog Artifactory

permiten gestionar estos registros y asegurarse de que los desarrolladores usen siempre versiones

seguras y actualizadas de los componentes.

7.3.2. Reutilización de componentes para la construcción de

sistemas software.
Uno de los mayores beneficios del desarrollo basado en componentes es que no es necesario

reinventar la rueda. Si ya existe un módulo que resuelve un problema específico, lo ideal es

reutilizarlo en lugar de programarlo otra vez. Esto ahorra tiempo y reduce errores.

Por ejemplo, en un proyecto web, en lugar de programar desde cero un sistema de autenticación, se

puede reutilizar un componente que ya implemente OAuth 2.0 o JWT (JSON Web Token). Lo

mismo ocurre en interfaces de usuario, donde frameworks como React y Angular permiten

reutilizar componentes visuales en distintos proyectos sin necesidad de escribir el código otra vez.

Para que la reutilización sea efectiva, los componentes deben estar bien documentados y seguir

estándares claros de integración. Aquí es donde entran los metadatos de los componentes, que

permiten describir cómo deben utilizarse y qué funcionalidades ofrecen.

 EDITORIAL TUTOR FORMACIÓN

[111]

7.3.3. Definición de metadatos de componente. Descriptores

de interfaces.
Los metadatos de un componente son información adicional que describe su funcionalidad,

dependencias y configuración. Son como una etiqueta que le dice a los desarrolladores (y a las

herramientas de gestión de software) qué hace el componente y cómo debe ser utilizado.

En muchos lenguajes, estos metadatos se incluyen en archivos específicos. Por ejemplo, en Java

con Maven, se utiliza el archivo pom.xml para definir las dependencias y versiones. En JavaScript

con npm, se usa package.json, mientras que en .NET con NuGet, el archivo de metadatos es un

.nuspec.

Además, en entornos donde los componentes interactúan con otros servicios, es común definir

descriptores de interfaces, que especifican cómo deben comunicarse los módulos entre sí.

Herramientas como OpenAPI (para APIs REST) y Protocol Buffers (para gRPC) permiten

describir estas interfaces de forma clara y estandarizada.

7.3.4. Modelo de seguridad
Cuando se reutilizan componentes o se integran módulos de terceros en una aplicación, la seguridad

es un aspecto que no se puede ignorar. Un componente mal diseñado o con vulnerabilidades puede

poner en riesgo todo el sistema.

Para evitar esto, es importante seguir buenas prácticas de seguridad en el desarrollo e integración

de componentes. Algunas de estas prácticas incluyen:

• Firmas digitales y verificación de integridad: herramientas como SLSA (Supply

Chain Levels for Software Artifacts) permiten verificar que un componente no ha

sido modificado maliciosamente.

• Escaneo de vulnerabilidades: plataformas como Snyk, Dependabot o SonarQube

analizan los componentes en busca de problemas de seguridad.

 EDITORIAL TUTOR FORMACIÓN

[112]

• Autorización y autenticación: al integrar componentes en una aplicación, es

fundamental asegurarse de que solo los usuarios y sistemas autorizados puedan acceder

a ellos. Tecnologías como OAuth 2.0 y JWT son ampliamente utilizadas para esto.

Un error común en el desarrollo basado en componentes es confiar ciegamente en paquetes externos

sin revisar su seguridad. Por eso, muchas empresas implementan repositorios internos de

confianza, donde solo se almacenan componentes que han sido verificados.

7.3.5. Instalación de componentes.
Para que un componente pueda ser utilizado en una aplicación, debe instalarse correctamente.

Dependiendo del lenguaje y el ecosistema en el que se trabaje, el proceso de instalación varía.

Como ya hemos visto, en Java, los componentes suelen instalarse a través de Maven o Gradle,

que descargan automáticamente las dependencias necesarias. En .NET, se utiliza NuGet, y en

JavaScript, los paquetes se instalan con npm o Yarn.

En entornos más avanzados, donde los componentes forman parte de una infraestructura de

microservicios, se utilizan herramientas como Docker y Kubernetes para gestionar la instalación

y ejecución de los módulos. Esto permite desplegar los componentes en cualquier entorno sin

preocuparse por configuraciones específicas de cada servidor.

Un aspecto importante de la instalación de componentes es asegurarse de que siempre se utilicen

versiones compatibles. Muchas herramientas permiten fijar versiones específicas o actualizar

automáticamente a la última versión disponible sin romper compatibilidad con el resto del sistema.

7.3.6. Depuración y prueba de componentes.
Antes de que un componente se integre en una aplicación, debe ser probado a fondo para asegurarse

de que funciona correctamente. La depuración y las pruebas son una parte esencial del ciclo de vida

del desarrollo de software.

Para detectar errores y corregirlos, los desarrolladores suelen utilizar depuradores (debuggers)

incluidos en IDEs como IntelliJ, Visual Studio Code o PyCharm. Estas herramientas permiten

ejecutar el código paso a paso y analizar su comportamiento en tiempo real.

Además, se implementan distintos tipos de pruebas para validar que los componentes funcionen

correctamente:

• Pruebas unitarias: verifican que cada componente funcione bien de manera aislada.

Frameworks como JUnit (Java), NUnit (.NET) y Jest (JavaScript) se usan para esto.

• Pruebas de integración: comprueban que los componentes funcionan correctamente

cuando se combinan con otros módulos.

• Pruebas automatizadas: herramientas como Selenium (para aplicaciones web) o

Postman (para APIs) permiten automatizar pruebas y asegurarse de que no aparezcan

errores en futuras actualizaciones.

Un buen proceso de pruebas evita que los componentes lleguen a producción con errores y ayuda a

detectar problemas antes de que afecten a los usuarios.

 EDITORIAL TUTOR FORMACIÓN

[113]

8. Prueba de autoevaluación.

¿Cuál es una de las principales ventajas del desarrollo basado en componentes?

a) Obliga a reutilizar siempre el mismo código sin modificaciones.

b) Permite dividir la aplicación en módulos independientes y reutilizables.

c) Depende exclusivamente de la programación orientada a objetos.

¿Qué elemento permite que los componentes interactúen sin necesidad de conocer su

implementación interna?

a) Las interfaces.

b) Los bucles.

c) Las variables globales.

¿Cuál de estas infraestructuras modernas facilita la gestión de microservicios en aplicaciones

basadas en componentes?

a) CORBA y EJB.

b) Kubernetes e Istio.

c) ActiveX y COM.

¿Cómo se consigue la separación entre interfaz e implementación en el desarrollo basado en

componentes?

a) Ocultando los detalles internos del componente y definiendo un contrato claro de

comunicación.

b) Haciendo que todos los módulos compartan su código fuente para evitar inconsistencias.

c) Usando exclusivamente lenguajes de bajo nivel como ensamblador.

En el ensamblado de componentes, ¿qué técnica permite que los módulos reciban

automáticamente sus dependencias sin crearlas manualmente?

a) Inyección de dependencias.

b) Uso de variables globales.

c) Copia directa del código de un módulo a otro.

En el desarrollo basado en componentes, cada módulo debe ser __________ para que pueda

reutilizarse en distintos sistemas sin problemas.

La técnica que permite que un componente reciba sus dependencias sin necesidad de crearlas

manualmente se llama __________.

Un componente debe poder __________ sin afectar al resto del sistema, lo que facilita su

mantenimiento y actualización.

Una de las ventajas de separar la interfaz de la implementación es que los módulos pueden

comunicarse a través de __________ sin conocer sus detalles internos.

Spring Boot, .NET Core y WebAssembly Components son ejemplos de tecnologías diseñadas

para trabajar con __________.

