
 EDITORIAL TUTOR FORMACIÓN

[119]

3. Diseño de componentes.
El diseño eficiente de componentes sigue principios como la minimización de dependencias

cíclicas, el cumplimiento del principio "open/closed", y la maximización de la reusabilidad y

configurabilidad. Además, el uso de patrones de diseño, librerías, interfaces y protocolos de

comunicación optimiza la integración de los componentes dentro del sistema.

Los componentes también deben cumplir con ciertas especificaciones, como la definición de

servicios esenciales (transacciones, seguridad, persistencia y acceso remoto), la formalización

de interfaces, y la estructuración de unidades de despliegue que faciliten su implementación y

actualización.

3.1. Principios de diseño de componentes.
La construcción de componentes en el contexto de diseño de elementos software con tecnologías

basadas en componentes requiere tomar en cuenta un conjunto de principios que garantizan la

solidez y la mantenibilidad del sistema. Al diseñar cada módulo, conviene prestar atención a cómo

se gestionan las dependencias, la forma de extender o modificar la funcionalidad sin alterar partes

que ya funcionan, la capacidad de reutilizar código y la posibilidad de configurar y adaptar el

comportamiento del componente a entornos diversos. A continuación, se exponen los principios de

diseño que resultan más significativos en esta tarea.

3.1.1. Dependencias no cíclicas.
El principio de dependencias no cíclicas sugiere que, en un sistema bien estructurado, los

componentes no deberían crear bucles de referencias donde uno dependa del otro y a la vez ese otro

necesite algo del primero. Esta práctica elimina situaciones confusas que pueden dificultar la

actualización o la integración de nuevas funcionalidades, además de complicar el despliegue en

entornos distribuidos. Por ejemplo, si un módulo de facturación depende de un módulo de clientes,

pero este a su vez depende del de facturación, cualquier cambio en uno podría generar efectos en

cadena y provocar errores difíciles de rastrear. Al mantener dependencias unidireccionales, la

arquitectura se hace más transparente y reduce el acoplamiento, lo que favorece la escalabilidad del

proyecto.

3.1.2. Principio “open/closed”.
El principio “open/closed” sostiene que un componente debería estar abierto a la extensión pero

cerrado a la modificación. Esto significa que, cuando se añaden nuevas características o se ajusta

la lógica existente, no debería ser necesario alterar el código original que funciona correctamente.

Para lograrlo, se acostumbra a establecer interfaces o puntos de extensión bien definidos, de modo

que otros desarrolladores puedan ampliar la funcionalidad sin introducir errores o afectar la

estabilidad de lo que ya existe. Un ejemplo podría ser un módulo de pago que ofrezca un punto de

entrada para nuevos métodos de cobro, de manera que si se integra un proveedor adicional, el código

base se mantenga intacto y la nueva lógica se añada mediante la implementación de la interfaz

correspondiente.

3.1.3. Reusabilidad.
La reusabilidad abarca la idea de que cada componente debería diseñarse con la intención de ser

empleado en distintos proyectos o en diferentes contextos dentro de un mismo sistema. Cuando las

clases y métodos se crean con un propósito muy específico y no contemplan casos de uso más

 EDITORIAL TUTOR FORMACIÓN

[120]

amplios, la posibilidad de reaprovecharlos disminuye considerablemente. Para favorecer la

reusabilidad, es adecuado pensar en componentes más genéricos, modularizar la lógica y apoyarse

en convenciones que permitan la configuración o personalización de aspectos puntuales sin duplicar

funcionalidad. Esto ahorra tiempo de desarrollo y homogeneiza la forma en que se construyen y

mantienen los proyectos en la organización.

3.1.4. Configurabilidad.
La configurabilidad determina el grado de flexibilidad que un componente ofrece para ajustarse

a distintos entornos o requisitos sin tener que modificar su código. Imaginemos un servicio de

notificaciones que, según la configuración, puede enviar correos electrónicos o mensajes SMS. Al

permitir parámetros externos, archivos de propiedades o directivas de entorno, el mismo

componente puede operar de maneras diversas sin transformarse en un bloque rígido. Esto adquiere

más relevancia en la era de la computación en la nube y los contenedores, donde cada instancia

puede requerir ajustes específicos de memoria, rutas de acceso o incluso credenciales de seguridad.

Un diseño configurado de esta forma hace posible reutilizar el mismo artefacto en escenarios

diferentes, simplificando la administración y la optimización de recursos.

3.1.5. Abstracción.
La abstracción se refiere a ofrecer una visión simplificada de la complejidad, de modo que las

capas superiores no necesiten preocuparse por los detalles internos. Al diseñar componentes, se

busca exponer interfaces claras que escondan la lógica subyacente, permitiendo que otras partes

del sistema interactúen con el componente sin tener que conocer su implementación exacta. Este

enfoque hace que la sustitución de un componente por otro sea más sencilla, siempre y cuando se

preserve el mismo contrato. Además, refuerza la idea de separar la lógica de negocio de la forma

en que se realiza dicha lógica. Un buen ejemplo se ve en una capa de persistencia que maneja la

comunicación con la base de datos, mientras que el resto del sistema se limita a enviar peticiones y

recibir resultados, sin importar cómo se conecta o se ejecutan las consultas internamente.

3.1.6. Dependencias.
La gestión de dependencias engloba cómo y en qué forma se asocian los componentes entre sí y

con librerías externas. Este ámbito incluye las versiones utilizadas y la forma en que se inyectan o

se resuelven dichas dependencias. Herramientas de construcción y empaquetado como Maven,

Gradle o NuGet han simplificado el manejo de dependencias en lenguajes como Java y C#. Sin

embargo, es necesario no abusar de librerías externas o de terceros que puedan introducir

vulnerabilidades o desalineaciones con la estrategia del proyecto. Además, un principio esencial

consiste en definir los contratos mínimos que se precisan para que un componente funcione. Esto

impide caer en dependencias excesivas que pueden ralentizar el desarrollo o causar

incompatibilidades difíciles de solucionar.

 EDITORIAL TUTOR FORMACIÓN

[121]

Actividad 8
El principio “open/closed” es fundamental para la extensibilidad del software. Busca un ejemplo

de su aplicación en un lenguaje de programación como Java, C# o Python, y explica cómo el código

se diseñó para permitir nuevas funcionalidades sin modificar la estructura existente.

Las dependencias pueden generar acoplamientos innecesarios en los sistemas. Investiga qué

herramientas existen para gestionar dependencias en un entorno de desarrollo moderno (por

ejemplo, Maven, Gradle o NuGet) y describe cómo ayudan a mejorar la escalabilidad y

mantenibilidad de los proyectos.

3.2. Técnicas de reusabilidad.
Las técnicas de reusabilidad sirven para crear soluciones en las que los componentes pueden

aprovecharse en múltiples proyectos o escenarios sin tener que reconstruir la misma lógica una y

otra vez. Este principio resulta vital en el diseño de elementos software con tecnologías basadas

en componentes, ya que un sistema compuesto por módulos reutilizables tiende a ser más sencillo

de mantener y ampliar. A continuación, se exponen diferentes métodos que ayudan a lograr este

objetivo, abarcando desde los fundamentos de la arquitectura hasta la elección de lenguajes de

programación y esquemas de comunicación.

3.2.1. Patrones.
Los patrones de diseño se han convertido en un punto de referencia para los desarrolladores que

enfrentan retos comunes en el desarrollo de software. En la década de los noventa, obras como

Design Patterns: Elements of Reusable Object-Oriented Software popularizaron soluciones como

Factory Method, Observer o Singleton, que permiten abordar problemas recurrentes a través de

estructuras de clases y objetos ya experimentadas en numerosos proyectos. Cuando estos patrones

se trasladan a un entorno de componentes, se traduce en una mayor uniformidad en la forma de

diseñar, pues cada módulo puede implementar o colaborar con otros siguiendo lineamientos claros

y reconocidos. Además, los patrones fomentan un lenguaje compartido entre los equipos, lo que

simplifica la comunicación y acelera la resolución de incidencias.

3.2.2. Librerías.
Las librerías representan uno de los mecanismos más efectivos para promover la reusabilidad.

Permiten agrupar funcionalidad genérica que distintos componentes pueden invocar sin volver a

programar la misma lógica. En lenguajes como Java, se empaquetan como JAR; en .NET, se

generan DLL; y en Python, se distribuyen como paquetes instalables. Estas colecciones pueden

abarcar desde utilidades matemáticas o criptográficas hasta conectores con servicios externos, como

plataformas de pago o almacenamiento en la nube. Al adoptar librerías versionadas, se pueden

realizar mejoras o correcciones de fallos de manera centralizada, asegurando que todos los

 EDITORIAL TUTOR FORMACIÓN

[122]

componentes que dependan de ellas puedan aprovechar esos cambios con una simple actualización,

siempre que se respete la compatibilidad de interfaces.

3.2.3. Interfaces.
Las interfaces establecen el contrato que define cómo un componente se comunica con otro. Al

especificar métodos y tipos de datos sin descender a detalles de implementación, se logra separar

la manera en que funciona un módulo internamente de la forma en que otros elementos lo utilizan.

Esto es muy valioso para la reusabilidad, porque si una interfaz permanece estable, es posible

sustituir o mejorar el componente sin que los consumidores se vean afectados. En un entorno de

microservicios, por ejemplo, las interfaces se pueden expresar mediante descripciones en

OpenAPI/Swagger, lo que facilita generar clientes y servidores en diferentes lenguajes y favorece

la integración de módulos que incluso pueden correr en plataformas distintas.

3.2.4. Protocolos y esquemas de mensajes.
En arquitecturas distribuidas, los protocolos y esquemas de mensajes desempeñan un papel

determinante para la colaboración entre componentes. Protocolos como HTTP, gRPC o AMQP se

usan ampliamente para comunicarse a través de la red, aprovechando estándares abiertos y librerías

que simplifican la implementación. Asimismo, los esquemas (por ejemplo, JSON, Protobuf o

Avro) describen la estructura de los datos intercambiados, de modo que cada parte del sistema sepa

exactamente qué esperar. Al definirse estos esquemas de forma independiente del código, se otorga

más flexibilidad a los desarrolladores, que pueden actualizar o extender campos sin romper las

integraciones existentes, siempre que respeten los elementos ya establecidos. Esta estrategia encaja

muy bien con la evolución constante que se da en los sistemas actuales.

3.2.5. Uso de lenguajes de programación.
La reusabilidad también depende del lenguaje de programación que se elija, dado que cada uno

ofrece ciertas características que pueden facilitar o entorpecer el diseño de componentes genéricos.

Por ejemplo, lenguajes orientados a objetos como Java o C# brindan mecanismos nativos

(interfaces, clases abstractas, genéricos) que promueven la creación de bloques independientes y

altamente configurables. En tanto, lenguajes como Python o JavaScript ofrecen un enfoque

dinámico que puede resultar más flexible, pero demanda mayor disciplina para asegurar la

coherencia de los contratos a lo largo del tiempo. La adopción de un lenguaje u otro debe analizarse

en función de las necesidades del proyecto, la experiencia del equipo y los requerimientos de

rendimiento o compatibilidad con otras tecnologías.

3.2.6. Estructuras y jerarquías de estructuras.
El modo en que se organizan los directorios, módulos y paquetes dentro de un proyecto es decisivo

para el reuso, ya que, si el código está enredado y disperso, la extracción de un componente para

emplearlo en otro proyecto se complica. Un ejemplo sería dividir el sistema en capas (presentación,

negocio, acceso a datos) y, dentro de cada capa, crear submódulos que atiendan diferentes dominios

funcionales. En muchas organizaciones, se siguen convenciones estándar (por ejemplo, la

convención de paquetes en Java o la estructura modular de Node.js) para que los desarrolladores

reconozcan rápidamente dónde se hallan los componentes y cuál es su responsabilidad. Esta

jerarquía también facilita la aplicación de herramientas de automatización, que se benefician de

estructuras de proyecto consistentes para compilar, probar y desplegar.

 EDITORIAL TUTOR FORMACIÓN

[123]

3.2.7. Arquitecturas de sistemas.
La arquitectura de sistemas tiene un impacto directo en la reusabilidad de los componentes.

Diseños monolíticos con alto acoplamiento tienden a dificultar el reaprovechamiento de

funcionalidad, pues todo se encuentra integrado en un solo bloque. Sin embargo, si se adopta una

visión modular o de microservicios, cada pieza puede transformarse en un producto autónomo que

cumpla con una función específica dentro de la organización o incluso en distintos proyectos.

Además, arquitecturas donde se promueve la independencia de cada componente (por ejemplo,

usando contenedores o servicios de mensajería) hacen que sea más fácil incorporar otros lenguajes

de programación y nuevos equipos de trabajo. Esto incrementa la colaboración y permite

aprovechar librerías o soluciones existentes sin tener que rehacer la infraestructura de

comunicación.

3.3. Modelo de componente.
El modelo de componente define de manera detallada la forma en que cada parte del sistema se

diseñará, se comunicará con las demás y será desplegada. En el diseño de elementos software con

tecnologías basadas en componentes, este modelo marca las pautas para garantizar que el

desarrollo se lleve a cabo de forma coherente, aprovechando las ventajas que ofrecen la

modularidad y la independencia de cada bloque. Cada componente debe especificar claramente sus

servicios, su interfaz, la forma en que se implementa y cómo se empaqueta para su ejecución. A

continuación, se explican los distintos aspectos de un modelo de componente y su relevancia en

proyectos donde la escalabilidad y la mantención continua son factores muy importantes.

3.3.1. Especificación de servicios: transacciones, seguridad,

persistencia y acceso remote.
En el modelo de componente, resulta esencial describir los servicios que provee, incluyendo

aquellos referentes a transacciones, seguridad, persistencia y acceso remoto. Por ejemplo, un

componente que maneje compras en línea podría ofrecer transacciones distribuidas que abarquen

varios pasos, integrando pagos e inventarios de manera confiable. En términos de seguridad, deben

definirse controles de autenticación y autorización, quizá empleando estándares como OAuth2 o

JWT en un entorno de microservicios. Para la persistencia, un componente puede trabajar con

diversas bases de datos o incluso servicios de almacenamiento en la nube, por lo que es fundamental

describir cómo se gestionan las conexiones o cómo se mantiene la integridad de los datos.

El acceso remoto también adquiere mucha importancia, ya que en una arquitectura moderna los

componentes suelen desplegarse en distintos contenedores, servidores o regiones geográficas. Si el

servicio se expone mediante APIs REST, gRPC o colas de mensajería, la especificación debe

indicar claramente los endpoints y los protocolos admitidos. Así se garantiza que otros componentes

o clientes externos sepan con precisión cómo consumir el servicio.

El siguiente diagrama representa los servicios esenciales que puede proveer un componente en un

modelo de arquitectura basado en componentes:

 EDITORIAL TUTOR FORMACIÓN

[124]

1. Nodo central: Componente de Compras en Línea

• Representa un módulo clave dentro del sistema.

2. Servicios principales (niveles compactos):

• Transacciones: Maneja pagos e inventarios, asegurando transacciones distribuidas.

• Seguridad: Implementa OAuth2, JWT y control de acceso.

• Persistencia: Se conecta a bases de datos y almacenamiento en la nube.

• Acceso remoto: Expone APIs y gRPC con balanceo de carga.

3.3.2. Especificación de Interface.
La especificación de la interfaz define qué métodos, endpoints o eventos ofrece el componente a

los consumidores. Al adoptar principios de diseño como la independencia y el encapsulado, la

interfaz se convierte en el contrato con el que otras partes del sistema pueden interactuar sin

conocer la lógica interna. Dentro de entornos de desarrollo como Java, C# o Python, esta

descripción puede plasmarse en forma de clases de interfaz, documentación API o archivos de

definición (por ejemplo, archivos .proto en gRPC). Si el sistema está basado en servicios web, la

interfaz puede describirse con OpenAPI o Swagger, asegurando que todos los equipos entiendan

con claridad los parámetros, tipos de datos y formatos de respuesta.

El siguiente diagrama representa la especificación de la interfaz en un sistema basado en

componentes, asegurando la comunicación entre módulos de manera independiente y encapsulada:

 EDITORIAL TUTOR FORMACIÓN

[125]

1. Nodo principal: Componente

• Representa un módulo que proporciona servicios o funcionalidades.

• Expone una interfaz que define cómo otros sistemas pueden interactuar con él.

2. Interfaz (Contrato del componente):

• Define los métodos, eventos y formatos de datos permitidos.

• Garantiza independencia y encapsulación, ocultando la lógica interna.

3. Detalles de la interfaz:

• Métodos:

• Implementados como clases de interfaz en lenguajes como Java, C#.

• Definidos en .proto para gRPC o documentados con OpenAPI/Swagger en REST.

• Eventos:

• Usa mecanismos como WebSockets, MQTT para comunicación en tiempo real.

• Permite suscripciones con Webhooks en sistemas event-driven.

• Formatos de datos:

• Datos en JSON o XML, dependiendo del estándar (REST, SOAP).

• ProtoBuf en entornos gRPC para mayor eficiencia.

Mantener la interfaz estable es muy necesario para la evolución del sistema. Cuando se necesita

agregar funcionalidades, la práctica habitual es incorporar nuevos métodos o versiones, sin alterar

drásticamente los existentes, para no romper la compatibilidad con los consumidores que confían

en la versión anterior de la interfaz.

3.3.3. Especificación de la implementación.
La implementación del componente comprende la lógica real que ejecuta los servicios, a menudo

basada en clases, patrones de diseño y uso de librerías o frameworks. Aquí se definen los

algoritmos, la estructura de datos y las interacciones con sistemas externos, siempre siguiendo los

lineamientos establecidos en la interfaz. En muchos casos, cada implementación puede dividirse en

submódulos o capas internas, de manera que la parte que maneja la persistencia se separe de la

lógica de negocio principal. Esto se traduce en un mantenimiento más sencillo, ya que se puede

actualizar una librería o mejorar un método sin influir en el resto del componente.

Asimismo, es interesante señalar que un mismo contrato (interfaz) puede contar con diferentes

implementaciones para escenarios distintos. Por ejemplo, un componente que manipule datos

podría tener una versión en memoria para pruebas rápidas y otra con persistencia real en una base

de datos SQL o NoSQL. Mientras se respete la misma interfaz, el resto de los sistemas pueden

emplear el componente sin enterarse de los cambios internos.

Ejemplo
Supongamos que estamos desarrollando un componente de autenticación para una aplicación web.

La interfaz del componente define los métodos iniciarSesion(usuario, contraseña) y

validarToken(token), pero la implementación puede variar según las necesidades del entorno.

1. Implementación con Base de Datos SQL:

• Se usa Spring Boot (Java) con Spring Security para manejar autenticación. Spring

Security proporciona filtros de autenticación, validación de usuarios y manejo de

 EDITORIAL TUTOR FORMACIÓN

[126]

sesiones sin necesidad de programar cada aspecto manualmente. Cuando

agregamos Spring Security a una aplicación de Spring Boot, automáticamente

protege todos los endpoints de la API, exigiendo autenticación.

• Se almacena la información en PostgreSQL con la tabla usuarios(id, nombre,

contraseña_hash).

 EDITORIAL TUTOR FORMACIÓN

[127]

• Se usa BCrypt para almacenar las contraseñas de forma segura.

 EDITORIAL TUTOR FORMACIÓN

[128]

• Se generan tokens JWT para la autenticación de usuarios.

2. Implementación en Memoria para Pruebas:

• Para evitar depender de una base de datos en pruebas unitarias, se implementa una

versión en memoria.

• Se usa un HashMap<String, String> para almacenar usuarios temporalmente sin

persistencia. Este servicio almacenará usuarios temporalmente en un

HashMap<String, String>, donde la clave es el email y el valor es la contraseña

cifrada con BCrypt:

 EDITORIAL TUTOR FORMACIÓN

[129]

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

import org.springframework.stereotype.Service;

import java.util.HashMap;

import java.util.Map;

import java.util.Optional;

@Service

public class AuthServiceMemoria {

 private final Map<String, String> usuarios = new HashMap<>();

 private final BCryptPasswordEncoder passwordEncoder = new BCryptPasswordEncoder();

 public AuthServiceMemoria() {

 // Usuarios de prueba en memoria

 registrarUsuario("usuario1@pruebas.com", "contraseña123");

 registrarUsuario("usuario2@pruebas.com", "claveSegura");

 }

 public void registrarUsuario(String email, String password) {

 usuarios.put(email, passwordEncoder.encode(password));

 }

 public boolean autenticarUsuario(String email, String password) {

 return Optional.ofNullable(usuarios.get(email))

 .map(hash -> passwordEncoder.matches(password, hash))

 .orElse(false);

 }

}

• Este controlador expone los endpoints /auth/login y /auth/register, permitiendo a los

usuarios autenticarse y registrarse en la memoria temporal.

import org.springframework.web.bind.annotation.*;

@RestController

@RequestMapping("/auth")

public class AuthControllerMemoria {

 private final AuthServiceMemoria authService;

 EDITORIAL TUTOR FORMACIÓN

[130]

 public AuthControllerMemoria(AuthServiceMemoria authService) {

 this.authService = authService;

 }

 @PostMapping("/register")

 public String registrar(@RequestParam String email, @RequestParam String password) {

 authService.registrarUsuario(email, password);

 return "Usuario registrado en memoria: " + email;

 }

 @PostMapping("/login")

 public String login(@RequestParam String email, @RequestParam String password) {

 if (authService.autenticarUsuario(email, password)) {

 return "Inicio de sesión exitoso para " + email;

 }

 return "Credenciales incorrectas";

 }

}

1. Al iniciar la aplicación, se crean dos usuarios de prueba en memoria.

2. Si un usuario quiere registrarse, se usa

/auth/register?email=usuario@correo.com&password=clave.

3. Para iniciar sesión, se hace un POST a

/auth/login?email=usuario@correo.com&password=clave.

4. No hay persistencia, ya que los datos se almacenan en un HashMap<String,

String>, útil para pruebas rápidas sin depender de PostgreSQL.

• Esta variante es útil para tests automatizados sin necesidad de configurar

PostgreSQL.

3. Interoperabilidad:

• Ambas implementaciones respetan la misma interfaz (Autenticador), por lo que los

consumidores no necesitan saber qué versión están usando.

• Un entorno de desarrollo puede ejecutar la versión en memoria, mientras que

producción usa la implementación con base de datos.

3.3.4. Especificación de las unidades de despliegue

(modulos).
La especificación de las unidades de despliegue describe cómo se empaquetan y distribuyen los

componentes para su ejecución. Cada módulo puede representarse como un archivo JAR, WAR o

EAR en el ecosistema Java, una DLL en .NET o un contenedor Docker en un escenario de

microservicios. Aquí se definen detalles como las dependencias necesarias, los requisitos de

configuración (variables de entorno, archivos de propiedades, etc.) y los metadatos para la

orquestación de los servicios.

 EDITORIAL TUTOR FORMACIÓN

[131]

En una arquitectura distribuida, cobra especial relevancia la descripción de cómo se replican los

componentes, cómo se monitorizan y qué escalado se aplica. Se pueden incluir también políticas

de versionado y migración, para que, al lanzar una nueva versión del módulo, los consumidores

sepan si se mantiene la compatibilidad hacia atrás o deben realizar ajustes. Esta aproximación

estructurada permite a los equipos de desarrollo y operación planificar la entrega continua (CI/CD)

y la puesta en producción con pocas sorpresas, contribuyendo a la estabilidad general del sistema.

Ejemplo
Consideremos cómo se distribuye y despliega el componente de autenticación en diferentes

entornos.

1. Despliegue en Java con JAR:

• Se empaqueta el componente como un archivo JAR (autenticacion.jar).

• Sus dependencias incluyen Spring Boot, PostgreSQL JDBC Driver y JWT Library.

• Se ejecuta en un servidor con java -jar autenticacion.jar.

2. Despliegue en Microservicios con Docker:

• Se define un Dockerfile con la imagen de openjdk:17.

• Se establece la configuración por variables de entorno (DB_HOST,

SECRET_KEY).

• Se usa Kubernetes para escalar automáticamente cuando hay muchas solicitudes.

3. Monitorización y Versionado:

• Se integran logs con Prometheus y alertas con Grafana.

• Las versiones siguen Semantic Versioning (1.2.3) para evitar incompatibilidades

en producción.

• Se utiliza un pipeline de CI/CD en GitHub Actions para automatizar despliegues

seguros.

3.4. Modelos de integración de componentes.
En un entorno de diseño de elementos software con tecnologías basadas en componentes, se

requiere establecer métodos claros y confiables para que los distintos módulos del sistema se

reconozcan, colaboren y compartan información entre sí. Los modelos de integración de

componentes abarcan desde la referencia y el uso de identidades únicas, hasta la elección de

mecanismos de comunicación como objetos distribuidos, servicios web o la utilización de

middleware especializado. Este proceso de integración no solo afecta a la manera en que los

componentes se localizan y llaman unos a otros, sino también a la forma en que se escalan, se

actualizan y se mantienen en el tiempo. A continuación, se describen algunos elementos clave de

estos modelos, dando una perspectiva de cómo se organizan las interacciones entre componentes

en sistemas modernos.

 EDITORIAL TUTOR FORMACIÓN

[132]

3.4.1. Referencias e identidad de objetos, componentes e

interfaces.
En muchos lenguajes de programación, las referencias permiten acceder a objetos en memoria,

pero en un sistema de componentes distribuidos cada módulo puede hallarse en un proceso, un

contenedor o incluso un servidor distinto. Por lo tanto, se necesita un modo de identificar de forma

inequívoca cada objeto o servicio. Esta identidad puede expresarse mediante identificadores únicos

universales (UUID), nombres lógicos o rutas de red. Por ejemplo, un componente denominado

“CarritoDeCompra” en una arquitectura de microservicios tal vez se identifique en el entorno de

Kubernetes con un nombre concreto, o a través de una URL si se trata de un servicio web.

Asimismo, en sistemas de objetos distribuidos tradicionales (como CORBA o RMI en Java), la

identidad se encapsula en “stubs” o proxies que representan a los objetos remotos.

En las interfaces, esta identidad se complementa con los métodos o endpoints que pueden invocarse.

Cada vez que un cliente requiere una operación, debe contar con una referencia válida que le indique

dónde y cómo puede llamar al componente. Este aspecto se vuelve trascendental cuando hay

múltiples réplicas de un mismo servicio, ya que la identidad y la referencia deben apuntar a una

instancia viva y funcional, incluso si la infraestructura realiza cambios en segundo plano para

balancear la carga o reemplazar contenedores.

Ejemplo
Imagina una aplicación de comercio electrónico basada en microservicios. En este sistema, el

componente CarritoDeCompra debe almacenar los productos que un usuario añade antes de realizar

la compra. Como el sistema está distribuido en contenedores dentro de Kubernetes, cada instancia

del carrito podría tener una identidad única generada por un UUID. De este modo, cuando un

usuario inicia sesión, el sistema puede recuperar su carrito mediante un identificador como cart-

1234-5678-9101. Si el sistema utilizara solo referencias en memoria sin un identificador persistente,

cada vez que un contenedor del microservicio se reiniciara, la información del carrito se perdería.

Supongamos que una empresa de logística tiene un sistema distribuido donde varios servidores

gestionan pedidos en diferentes almacenes. Utilizando Java RMI, cada servidor almacena objetos

de pedidos en diferentes ubicaciones geográficas. Para que un cliente pueda consultar el estado de

su pedido, necesita una referencia a un objeto remoto. En este caso, cuando un usuario busca su

pedido #98765, el sistema obtiene un stub (proxy) que representa el objeto remoto del pedido y

permite interactuar con él como si fuera un objeto local. Sin este mecanismo de referencia, cada

solicitud debería rastrear manualmente en qué servidor se encuentra el pedido, complicando la

escalabilidad.

En un sistema de banca en línea, múltiples servidores manejan solicitudes de clientes que quieren

consultar el saldo de su cuenta. Si la API de CuentasBancarias tiene varias réplicas activas, cada

solicitud HTTP debe dirigirse a una instancia funcional. Para lograrlo, los balances de carga

modernos utilizan identificadores lógicos como https://api.banco.com/cuentas/{id} en lugar de

direcciones IP fijas. Así, cuando un cliente consulta su cuenta 12345678, la infraestructura

selecciona dinámicamente un servidor disponible que maneje la solicitud. Si un servidor deja de

estar disponible, la identidad del servicio se mantiene sin que los clientes necesiten conocer detalles

internos.

 EDITORIAL TUTOR FORMACIÓN

[133]

3.4.2. Servicios de localización
Para que los componentes se encuentren y se comuniquen entre sí, suelen implementarse servicios

de localización, también denominados servicios de descubrimiento o service discovery.

Herramientas como Consul o Zookeeper facilitan que cada componente registre su ubicación y

sepa la de los demás. De este modo, si un microservicio necesita llamar a un servicio de facturación,

no recurre a una dirección fija, sino que consulta al servicio de localización para saber qué instancias

están disponibles y en qué hosts o puertos se encuentran. Esto hace que la arquitectura sea más

dinámica, pues los componentes pueden arrancar y apagarse sin afectar a otros, siempre que se

actualice la información en el servicio de localización.

En sistemas más antiguos, este rol se cumplía mediante directorios globales, como servidores LDAP

o modelos de nombres en CORBA, donde cada objeto remoto se anunciaba para que los clientes

supieran cómo acceder a él. Aunque dichas soluciones no han desaparecido, en la actualidad los

despliegues en contenedores y la adopción masiva de la nube han impulsado la popularidad de

soluciones más orientadas a la virtualización y la escalabilidad automática, lo que coloca a los

servicios de localización en un lugar predominante dentro de las arquitecturas distribuidas.

3.4.3. Modelos de intercambio: objetos distribuidos, capa

intermedia (Middleware) e interacción e integración

mediante servicios web.
Como hemos visto en apartados anteriores, existen distintos modelos de intercambio que dan

forma a la interacción entre componentes, reflejándose en la manera en que se envían peticiones,

se reciben respuestas y se comparten eventos:

1. Objetos distribuidos: Se basan en la idea de que los objetos pueden estar en distintos

procesos o máquinas, pero los desarrolladores pueden llamarlos como si estuvieran en la

 EDITORIAL TUTOR FORMACIÓN

[134]

misma aplicación. Ejemplos históricos incluyen CORBA o DCOM, y en el ecosistema

Java, RMI. Este esquema supone que la llamada a un método remoto es similar a la de uno

local, aunque en realidad se realice mediante red y requiera serializar parámetros y

resultados. Suelen proporcionar un alto nivel de transparencia, pero pueden imponer

complejidades asociadas a la latencia de red, a la gestión de proxies y a la necesidad de un

runtime compatible en ambas partes.

2. Capa intermedia (Middleware): En lugar de llamar directamente a objetos remotos, se

introduce un middleware que ofrece servicios transversales, como balanceo de carga,

seguridad unificada o gestión de mensajería. De esta forma, cada componente se comunica

con la capa intermedia, y no directamente con otros componentes. Es el middleware quien

se encarga de enrutar las peticiones, ofrecer transacciones distribuidas o coordinar los

mensajes. Esta aproximación, típica de los servidores de aplicaciones JEE o de buses de

servicios empresariales (ESB), se integra frecuentemente en contextos corporativos para

unificar la comunicación entre sistemas legados y aplicaciones nuevas. En la actualidad,

muchos proyectos adoptan colas de mensajería como RabbitMQ, ActiveMQ o Kafka para

lograr un acoplamiento más bajo y una interacción asíncrona.

3. Interacción e integración mediante servicios web: Con la explosión de la web y las

arquitecturas de microservicios, los servicios web (REST, SOAP, gRPC, GraphQL, etc.)

se han convertido en un método muy extendido para la integración de componentes. Cada

servicio se expone como un endpoint, y los clientes se comunican usando protocolos HTTP

o HTTP/2, intercambiando datos en formatos como JSON o Protobuf. Esta metodología

aporta un acoplamiento moderado, ya que cada componente puede evolucionar de manera

independiente mientras mantenga la compatibilidad con los esquemas y endpoints

definidos. Al combinarse con servicios de localización y herramientas de despliegue

automático, se obtiene una arquitectura flexible y propicia para la evolución continua.

La elección entre objetos distribuidos, middleware o servicios web depende de factores como la

complejidad del sistema, la disponibilidad de entornos runtime, la necesidad de transacciones y la

adopción de patrones como sincronicidad o asincronía. Lo más frecuente hoy en día es emplear un

modelo basado en APIs web, ya que permite integrar distintos lenguajes y plataformas con un coste

relativamente bajo de desarrollo y mantenimiento. Aun así, sectores que manejan transacciones

muy estrictas o requieren baja latencia pueden optar por enfoques más específicos.

A continuación, se presenta una tabla que muestra ejemplos reales y concretos, describiendo

distintas situaciones y la elección más adecuada entre objetos distribuidos, middleware o

servicios web, junto con el motivo principal de la selección. Cada escenario parte de necesidades

específicas, como la complejidad del sistema, la forma de desplegar o la exigencia de transacciones:

Escenario Complejidad o

requisitos

Enfoque más

adecuado

Razón de la elección

Pequeña plataforma

de comercio

electrónico que

ofrece un catálogo y

un módulo de pago

Escenario web,

demanda moderada,

equipos con

experiencia en REST,

variedad de lenguajes

Servicios web

(APIs REST)

Integración sencilla entre

frontend y backend,

aprovechamiento de

librerías disponibles para

JSON y HTTP, flexibilidad

al gestionar datos en

diferentes lenguajes

Empresa grande con

sistemas heredados

(ERP y CRM) y

nuevas aplicaciones

Infraestructura

heterogénea, datos en

varios formatos,

equipos que trabajan

Middleware, por

ejemplo un bus

Proporciona

funcionalidades de

enrutado y transformación

de mensajes, integra

 EDITORIAL TUTOR FORMACIÓN

[135]

que deben

intercambiar

información

en plataformas

distintas

empresarial de

servicios

sistemas antiguos y

modernos, maneja

seguridad y transacciones

sin exponer complejidad al

resto

Plataforma

financiera con

necesidad de

transacciones

distribuidas en

múltiples pasos

Datos muy delicados,

coherencia total ante

fallos, cumplimiento

de estándares

estrictos

Middleware

transaccional o

enfoque de

objetos

distribuidos en

casos puntuales

Garantiza consistencia en

cada operación, ofrece

rollback automático y

control centralizado de las

transacciones, fundamental

para entornos bancarios

Sistema

multijugador en

línea con juegos en

tiempo real y mínima

latencia

Latencia muy baja,

sincronización

inmediata, posible

implementación con

sockets o protocolos

específicos

Objetos

distribuidos muy

especializados o

uso de sockets

directos

Llamadas casi instantáneas

para coordinar

movimientos, se busca

reducir el retardo de la red,

se suelen usar protocolos

como WebSockets o UDP

Microservicios que

gestionan eventos de

una plataforma de

dispositivos

conectados

Muchos productores

y consumidores de

datos, necesidad de

comunicación

asincrónica, escalado

rápido

Servicios web con

mensajería

asíncrona (Kafka,

RabbitMQ, etc)

Acoplamiento flexible

mediante suscripciones y

colas, cada microservicio

publica y consume eventos

sin bloquear a los demás

Red de logística con

sucursales

distribuidas y

conexiones de red

poco confiables

Caídas frecuentes en

la comunicación,

requerimiento de alta

disponibilidad, picos

de tráfico variables

Middleware de

mensajería

asíncrona

Garantiza reintentos y

entrega fiable, cada

sucursal puede funcionar

de forma aislada y luego

sincronizar pedidos y

envíos en cuanto se

restablezca la conexión

Empresa que

comercializa un

motor de informes a

varios clientes con

entornos de

desarrollo diferentes

Necesidad de exponer

la misma

funcionalidad a

clientes con lenguajes

variados,

mantenimiento

prolongado

Servicios web

(REST o gRPC)

Facilita la publicación de

un contrato uniforme,

soporta la integración con

clientes en lenguajes

distintos, la documentación

con OpenAPI o gRPC

agiliza el soporte

Aplicación interna

de colaboración

documental con

prioridad en la

comunicación dentro

de la misma red local

Todos los equipos

están en la misma

LAN, sin apertura a

Internet, frecuencia

alta de llamadas entre

módulos

Objetos

distribuidos

(RMI, .NET

Remoting) o

middleware local

Simplifica la llamada a

métodos remotos, se

aprovecha la baja latencia

de la red interna, no se

requiere exponer interfaces

REST de manera pública

 EDITORIAL TUTOR FORMACIÓN

[136]

Actividad 9
A continuación, se presentan una serie de afirmaciones relacionadas con el modelo de componentes.

Cada afirmación tiene una palabra clave desordenada. Tu tarea es ordenar las letras para descubrir

la respuesta correcta.

En un sistema basado en componentes, cada parte del software debe definir qué servicios ofrece y

cómo se comunica con los demás módulos. Para ello, se establecen contratos conocidos como:

treainref ➝ __________

Uno de los elementos fundamentales del modelo de componentes es la forma en que cada unidad

se distribuye e instala en los distintos entornos. A este proceso se le llama:

oepylsdeg ➝ __________

Cuando un componente ofrece funcionalidades como transacciones, seguridad y persistencia de

datos, se dice que define su:

icvesesorpiadón ➝ __________

Para que un componente pueda evolucionar sin afectar a los demás, debe mantener estable su:

zcntriao ➝ __________

El acceso remoto de los componentes se logra mediante protocolos como HTTP, gRPC o colas de

mensajería. Estas formas de comunicación se conocen como:

dlmoeos ed riciaagnte ➝ __________

 EDITORIAL TUTOR FORMACIÓN

[137]

4. Comparación entre métodos de

intercambio en las principales

infraestructuras de componentes:

OMG: CORBA, OMA, Java:

JavaBeans, EJBs y Microsoft:

COM, OLE/ActiveX, .NET.
Las infraestructuras de componentes han evolucionado a lo largo del tiempo, ofreciendo

diferentes estrategias para el intercambio de información y la integración de módulos en

aplicaciones distribuidas. En el diseño de elementos software con tecnologías basadas en

componentes, es importante conocer las opciones históricas y las más actuales, ya que, según el

entorno y los requisitos, pueden resultar más o menos adecuadas. A continuación, se expone una

comparación entre algunos métodos de intercambio propuestos por OMG (CORBA y OMA), las

soluciones de Java (JavaBeans y EJBs) y las ofrecidas por Microsoft (COM, OLE/ActiveX y .NET),

destacando sus usos y evolución en los proyectos modernos.

En primer lugar, el Object Management Group (OMG) impulsó CORBA (Common Object

Request Broker Architecture) como una manera de lograr que objetos escritos en distintos lenguajes

y ejecutados en plataformas diferentes pudiesen comunicarse a través de una capa conocida como

ORB (Object Request Broker). CORBA ofrecía un modelo de objetos distribuidos, un lenguaje de

definición de interfaces (IDL) y la promesa de independencia respecto a sistemas operativos o

lenguajes de programación. No obstante, con el tiempo, varios desarrolladores han optado por

alternativas más ligeras o más sencillas de configurar, especialmente con la irrupción de las

arquitecturas de microservicios. Pese a ello, aún se encuentran implementaciones de CORBA en

sectores donde la confiabilidad y la interoperabilidad entre sistemas heterogéneos siguen siendo

prioritarias. La OMA (Object Management Architecture) complementó esta visión al definir un

conjunto de servicios y facilidades que podían extender CORBA, dotando al ecosistema de un

enfoque más amplio para la gestión de objetos en entornos distribuidos.

En el mundo de Java, se han presentado distintas aproximaciones para la creación y el intercambio

de componentes. JavaBeans surgió como un modelo para encapsular propiedades, eventos y

métodos en objetos reutilizables que pudieran trabajar fácilmente en IDEs y entornos visuales de

desarrollo. Se usaban con frecuencia para construir elementos de interfaz o lógicas sencillas que

debían moverse de un lugar a otro dentro de una misma aplicación. Por otra parte, Enterprise

JavaBeans (EJBs) elevaron la idea de un componente a un entorno más corporativo, centrándose

en servicios de negocio y transacciones distribuidas. En los servidores de aplicaciones (por ejemplo,

Jakarta EE), los EJBs se gestionan de manera que el programador se beneficia de funciones como

transacciones, seguridad y concurrencia, sin tener que lidiar con la complejidad de implementarlas.

Con la llegada de Spring y arquitecturas de microservicios, muchos desarrolladores prefieren

soluciones más ligeras, aunque los EJBs todavía se usan en sistemas de gran escala que requieren

la robustez del modelo clásico.

En el lado de Microsoft, la evolución ha seguido un trayecto notable. COM (Component Object

Model) sirvió como base para crear componentes binarios que podían integrarse en distintas

aplicaciones de Windows, incluyendo soporte para lenguajes variados. De COM derivaron

tecnologías como OLE (Object Linking and Embedding) y ActiveX, usadas en su momento para

insertar documentos, reproducir contenidos o interactuar con controles dentro de navegadores. Sin

embargo, con la expansión de la web y la aparición de nuevas necesidades de seguridad y

 EDITORIAL TUTOR FORMACIÓN

[138]

escalabilidad, muchos de estos enfoques quedaron limitados al ámbito Windows o al software

legacy. Con la llegada de la plataforma .NET, Microsoft facilitó el diseño de componentes y

servicios más flexibles, apoyándose en lenguajes como C# o VB.NET y en un entorno de ejecución

unificado (CLR). Hoy en día, la plataforma .NET se ha modernizado (incluyendo .NET 5, .NET 6

y .NET 7), ampliando su alcance a entornos Linux y macOS, y ofreciendo un modelo más abierto

para el desarrollo de soluciones distribuidas y la integración de microservicios.

En el presente, la tendencia se inclina hacia arquitecturas más abiertas y basadas en protocolos o

estándares web, como REST o gRPC, en parte porque facilitan la interoperabilidad con múltiples

lenguajes y se ajustan mejor al mundo de los contenedores y la nube. Sin embargo, los modelos

clásicos de componentes (CORBA, EJBs, COM, etc.) persisten en numerosos sistemas que aún

valoran la estabilidad y la robustez de esas tecnologías, sobre todo en organizaciones donde la

migración a alternativas más modernas conlleva riesgos o costos elevados. Esta coexistencia de

enfoques demuestra que cada solución responde a un conjunto de problemas y prioridades

diferentes.

Así, cuando se aborda el diseño de elementos software con tecnologías basadas en componentes,

conviene estudiar con detalle los requerimientos de interoperabilidad, la infraestructura disponible,

los patrones de uso y las expectativas a largo plazo. CORBA puede ser idóneo si se necesita integrar

sistemas muy dispares con énfasis en la neutralidad de lenguaje. Los EJBs funcionan bien en

entornos donde la capacidad transaccional y la gestión de la seguridad a nivel empresarial están

muy presentes. Mientras que .NET, con su ecosistema y la adopción de estándares más recientes,

se ajusta perfectamente a proyectos que deseen abarcar plataformas distintas y aprovechar

herramientas modernas de despliegue.

4.1. Diagramación y documentación de

componentes.
La diagramación y documentación de componentes permite ilustrar de manera gráfica y

ordenada la forma en que cada parte del sistema se conecta con las demás, facilitando la

comprensión y el mantenimiento a lo largo de su ciclo de vida. En el diseño de elementos software

con tecnologías basadas en componentes, se recomiendan distintas representaciones que

describan tanto la estructura informativa como el comportamiento dinámico de las aplicaciones. A

través de estos recursos, los equipos de desarrollo y los interesados en el proyecto adquieren una

visión clara de los módulos existentes, sus dependencias, cómo se despliegan y de qué manera

interactúan para cubrir los requerimientos.

4.1.1. Modelo de información: diagramas conceptuales,

diagramas de arquitectura de componentes y

diagramas de despliegue.
El modelo de información abarca, de forma importante, las perspectivas estáticas del sistema.

Dentro de este modelo, los diagramas conceptuales presentan las entidades principales y las

relaciones que comparten, resultando útiles para entender los elementos claves del dominio y su

vínculo con las reglas de negocio. El diagrama conceptual que se expone a continuación representa

entidades principales y sus relaciones en un sistema de comercio electrónico. Muestra cómo un

Cliente realiza uno o varios Pedidos, cada pedido puede contener múltiples Productos, y cada

producto pertenece a una Categoría:

 EDITORIAL TUTOR FORMACIÓN

[139]

Por otro lado, los diagramas de arquitectura de componentes detallan cómo se agrupan y se

conectan los módulos, especificando qué interfaces exponen y de qué otros módulos dependen. Esta

representación es muy valiosa cuando se trabaja en equipos grandes o se planifica la evolución de

la solución, ya que permite identificar rápidamente si un componente tiene demasiadas

dependencias o si puede reutilizarse en distintos entornos. El siguiente diagrama representa los

módulos de una aplicación de gestión de usuarios con autenticación y notificaciones. Se visualiza

cómo los servicios de autenticación, usuarios y notificaciones interactúan con la base de datos y el

servidor de correo, mientras que una API Gateway centraliza el acceso:

 EDITORIAL TUTOR FORMACIÓN

[140]

Además, los diagramas de despliegue muestran cómo los componentes se distribuyen en la

infraestructura, indicando los servidores, contenedores o procesos donde se ejecutan. Esto ayuda a

planificar la escalabilidad y la resiliencia, al mostrar de manera visual el flujo de comunicación

entre nodos y la ubicación de cada módulo en diferentes niveles de la plataforma. A continuación,

se representa la distribución de componentes en una infraestructura con contenedores Docker.

Muestra cómo la aplicación se despliega en tres servidores, separando la funcionalidad en módulos

independientes:

 EDITORIAL TUTOR FORMACIÓN

[141]

4.1.2. Modelo dinámico: diagramas de interacción y de

actividad, diagramas de casos de uso y diagramas de

estado.
El modelo dinámico describe los procesos y la forma en que los componentes se comportan en

tiempo de ejecución. Entre las representaciones más importantes para este enfoque se encuentran

los diagramas de interacción, que incluyen los de secuencia o colaboración.

En un diagrama de secuencia, puede verse cómo cada componente recibe y envía mensajes, paso

a paso, para llevar a cabo una funcionalidad. Esto aporta claridad acerca de quién inicia una

operación, en qué orden se ejecutan las peticiones y cuál es la dependencia temporal entre módulos.

El siguiente diagrama representa cómo un usuario inicia sesión en una aplicación, pasando por el

servicio de autenticación y la base de datos:

Por su parte, los diagramas de actividad representan flujos de trabajo que involucran múltiples

estados y decisiones, siendo ideales para describir algoritmos o procesos de negocio compuestos

por pasos sucesivos. Por ejemplo, el siguiente diagrama representa el flujo de pago en un sistema

de comercio electrónico:

 EDITORIAL TUTOR FORMACIÓN

[142]

Para reflejar la relación del sistema con los usuarios o con otros actores, los diagramas de casos

de uso resultan de gran ayuda, pues describen las acciones principales de cada actor y la

funcionalidad que el sistema debe proveer sin entrar en detalles de implementación. El siguiente

diagrama muestra las interacciones entre usuarios y el sistema en un portal de comercio electrónico:

Por su parte, los diagramas de estado son útiles para aquellos componentes que manejan ciclos de

vida complejos, cambiando de un estado a otro según eventos o condiciones específicas. Esto cobra

 EDITORIAL TUTOR FORMACIÓN

[143]

relevancia cuando se requiere modelar transiciones y restricciones con precisión, como ocurre en

sistemas de reserva de vuelos o de gestión de producción. Por ejemplo, el siguiente diagrama

representa el ciclo de vida de un pedido en una tienda en línea:

 EDITORIAL TUTOR FORMACIÓN

[144]

5. Prueba de autoevaluación.
¿Cuál de las siguientes afirmaciones describe mejor un componente software en la orientación

a componentes?

a) Es una unidad funcional autónoma con una interfaz bien definida.

b) Es un objeto que solo puede existir dentro de una aplicación específica.

c) Es un módulo de código que no requiere una interfaz para interactuar con otros módulos.

¿Cuál es una diferencia clave entre un componente y un objeto en la orientación a objetos?

a) Los componentes dependen directamente de la aplicación en la que se crean, mientras que los

objetos son autónomos.

b) Los componentes pueden desplegarse y operar independientemente, mientras que los objetos

suelen depender del entorno de ejecución.

c) Los objetos siempre tienen una interfaz pública, mientras que los componentes no necesitan

interfaces definidas.

¿Cuál de las siguientes características define a una arquitectura basada en middleware?

a) No permite la comunicación entre distintos sistemas o tecnologías.

b) Facilita la interoperabilidad entre componentes a través de una capa intermedia.

c) Requiere que todos los componentes estén en el mismo entorno de ejecución.

¿Qué función cumplen las interfaces en el diseño de componentes?

a) Permiten la comunicación entre componentes asegurando consistencia y compatibilidad.

b) Evitan que los componentes puedan escalar en entornos distribuidos.

c) Hacen que los módulos dependan unos de otros sin importar su propósito.

¿Qué ventaja proporciona el escalado de componentes en una arquitectura basada en la nube?

a) Permite aumentar la capacidad de procesamiento sin modificar el resto del sistema.

b) Reduce la modularidad del sistema al centralizar los procesos.

c) Impide que diferentes instancias de un componente interactúen entre sí.

En la orientación a componentes, un __________ encapsula lógica de negocio y datos,

permitiendo su reutilización en diferentes aplicaciones.

A diferencia de los objetos, los componentes pueden operar de manera __________, lo que

facilita su integración en entornos distribuidos.

Un sistema basado en __________ permite que distintos componentes se comuniquen a través de

una capa intermedia sin necesidad de estar directamente acoplados.

El versionado de __________ es fundamental para garantizar la compatibilidad con versiones

previas y evitar interrupciones en los clientes.

Un componente sin estado (stateless) es más fácil de escalar horizontalmente porque no

almacena __________ entre diferentes instancias.

