EDITORIAL TUTOR FORMACION

3. Diseno de componentes.

El disefio eficiente de componentes sigue principios como la minimizacion de dependencias
ciclicas, el cumplimiento del principio "open/closed™, y la maximizacién de la reusabilidad y
configurabilidad. Ademas, el uso de patrones de disefio, librerias, interfaces y protocolos de
comunicacién optimiza la integracién de los componentes dentro del sistema.

Los componentes también deben cumplir con ciertas especificaciones, como la definicion de
servicios esenciales (transacciones, seguridad, persistencia y acceso remoto), la formalizacion
de interfaces, y la estructuracion de unidades de despliegue que faciliten su implementacion y
actualizacion.

3.1. Principios de disefio de componentes.

La construccion de componentes en el contexto de disefio de elementos software con tecnologias
basadas en componentes requiere tomar en cuenta un conjunto de principios que garantizan la
solidez y lamantenibilidad del sistema. Al disefiar cada mddulo, conviene prestar atencion a como
se gestionan las dependencias, la forma de extender o modificar la funcionalidad sin alterar partes
gue ya funcionan, la capacidad de reutilizar cédigo y la posibilidad de configurar y adaptar el
comportamiento del componente a entornos diversos. A continuacidn, se exponen los principios de
disefio que resultan mas significativos en esta tarea.

3.1.1. Dependencias no ciclicas.

El principio de dependencias no ciclicas sugiere que, en un sistema bien estructurado, los
componentes no deberian crear bucles de referencias donde uno dependa del otro y a la vez ese otro
necesite algo del primero. Esta préctica elimina situaciones confusas que pueden dificultar la
actualizacion o la integracion de nuevas funcionalidades, ademéas de complicar el despliegue en
entornos distribuidos. Por ejemplo, si un mddulo de facturacién depende de un médulo de clientes,
pero este a su vez depende del de facturacion, cualquier cambio en uno podria generar efectos en
cadena y provocar errores dificiles de rastrear. Al mantener dependencias unidireccionales, la
arquitectura se hace mas transparente y reduce el acoplamiento, lo que favorece la escalabilidad del
proyecto.

3.1.2. Principio “open/closed”.

El principio “open/closed” sostiene que un componente deberia estar abierto a la extension pero
cerrado a la modificacién. Esto significa que, cuando se afiaden nuevas caracteristicas o se ajusta
la l6gica existente, no deberia ser necesario alterar el cddigo original que funciona correctamente.
Para lograrlo, se acostumbra a establecer interfaces o puntos de extensidon bien definidos, de modo
gue otros desarrolladores puedan ampliar la funcionalidad sin introducir errores o afectar la
estabilidad de lo que ya existe. Un ejemplo podria ser un médulo de pago que ofrezca un punto de
entrada para nuevos métodos de cobro, de manera que si se integra un proveedor adicional, el cddigo
base se mantenga intacto y la nueva logica se afiada mediante la implementacion de la interfaz
correspondiente.

3.1.3. Reusabilidad.

La reusabilidad abarca la idea de que cada componente deberia disefiarse con la intencion de ser
empleado en distintos proyectos o en diferentes contextos dentro de un mismo sistema. Cuando las
clases y métodos se crean con un propo6sito muy especifico y no contemplan casos de uso mas

[119]

EDITORIAL TUTOR FORMACION

amplios, la posibilidad de reaprovecharlos disminuye considerablemente. Para favorecer la
reusabilidad, es adecuado pensar en componentes mas genéricos, modularizar la l6gica y apoyarse
en convenciones que permitan la configuracion o personalizacion de aspectos puntuales sin duplicar
funcionalidad. Esto ahorra tiempo de desarrollo y homogeneiza la forma en que se construyen y
mantienen los proyectos en la organizacion.

3.1.4. Configurabilidad.

La configurabilidad determina el grado de flexibilidad que un componente ofrece para ajustarse
a distintos entornos o requisitos sin tener que modificar su codigo. Imaginemos un servicio de
notificaciones que, segun la configuracion, puede enviar correos electronicos o mensajes SMS. Al
permitir pardmetros externos, archivos de propiedades o directivas de entorno, el mismo
componente puede operar de maneras diversas sin transformarse en un bloque rigido. Esto adquiere
mas relevancia en la era de la computacion en la nube y los contenedores, donde cada instancia
puede requerir ajustes especificos de memoria, rutas de acceso o incluso credenciales de seguridad.
Un disefio configurado de esta forma hace posible reutilizar el mismo artefacto en escenarios
diferentes, simplificando la administracién y la optimizacion de recursos.

3.1.5. Abstraccion.

La abstraccion se refiere a ofrecer una vision simplificada de la complejidad, de modo que las
capas superiores no necesiten preocuparse por los detalles internos. Al disefiar componentes, se
busca exponer interfaces claras que escondan la Idgica subyacente, permitiendo que otras partes
del sistema interactGen con el componente sin tener que conocer su implementacion exacta. Este
enfoque hace que la sustitucion de un componente por otro sea mas sencilla, siempre y cuando se
preserve el mismo contrato. Ademas, refuerza la idea de separar la Idgica de negocio de la forma
en que se realiza dicha lIdgica. Un buen ejemplo se ve en una capa de persistencia que maneja la
comunicacién con la base de datos, mientras que el resto del sistema se limita a enviar peticiones y
recibir resultados, sin importar como se conecta o se ejecutan las consultas internamente.

3.1.6. Dependencias.

La gestion de dependencias engloba como y en qué forma se asocian los componentes entre si y
con librerias externas. Este &mbito incluye las versiones utilizadas y la forma en que se inyectan o
se resuelven dichas dependencias. Herramientas de construccion y empaquetado como Maven,
Gradle o NuGet han simplificado el manejo de dependencias en lenguajes como Java y C#. Sin
embargo, es necesario no abusar de librerias externas o de terceros que puedan introducir
vulnerabilidades o desalineaciones con la estrategia del proyecto. Ademas, un principio esencial
consiste en definir los contratos minimos que se precisan para que un componente funcione. Esto
impide caer en dependencias excesivas que pueden ralentizar el desarrollo o causar
incompatibilidades dificiles de solucionar.

[120]

EDITORIAL TUTOR FORMACION

Actividad 8

El principio “open/closed” es fundamental para la extensibilidad del software. Busca un ejemplo
de su aplicacion en un lenguaje de programacién como Java, C# o Python, y explica como el cédigo
se disefio para permitir nuevas funcionalidades sin modificar la estructura existente.

Las dependencias pueden generar acoplamientos innecesarios en los sistemas. Investiga qué
herramientas existen para gestionar dependencias en un entorno de desarrollo moderno (por
ejemplo, Maven, Gradle o NuGet) y describe como ayudan a mejorar la escalabilidad y
mantenibilidad de los proyectos.

—————""

3.2. Técnicas de reusabilidad.

Las técnicas de reusabilidad sirven para crear soluciones en las que los componentes pueden
aprovecharse en multiples proyectos o escenarios sin tener que reconstruir la misma Idgica una 'y
otra vez. Este principio resulta vital en el disefio de elementos software con tecnologias basadas
en componentes, ya que un sistema compuesto por médulos reutilizables tiende a ser mas sencillo
de mantener y ampliar. A continuacion, se exponen diferentes métodos que ayudan a lograr este
objetivo, abarcando desde los fundamentos de la arquitectura hasta la eleccién de lenguajes de
programacion y esquemas de comunicacion.

3.2.1. Patrones.

Los patrones de disefio se han convertido en un punto de referencia para los desarrolladores que
enfrentan retos comunes en el desarrollo de software. En la década de los noventa, obras como
Design Patterns: Elements of Reusable Object-Oriented Software popularizaron soluciones como
Factory Method, Observer o Singleton, que permiten abordar problemas recurrentes a través de
estructuras de clases y objetos ya experimentadas en numerosos proyectos. Cuando estos patrones
se trasladan a un entorno de componentes, se traduce en una mayor uniformidad en la forma de
disefiar, pues cada médulo puede implementar o colaborar con otros siguiendo lineamientos claros
y reconocidos. Ademas, los patrones fomentan un lenguaje compartido entre los equipos, lo que
simplifica la comunicacion y acelera la resolucién de incidencias.

3.2.2. Librerias.

Las librerias representan uno de los mecanismos mas efectivos para promover la reusabilidad.
Permiten agrupar funcionalidad genérica que distintos componentes pueden invocar sin volver a
programar la misma légica. En lenguajes como Java, se empaquetan como JAR; en .NET, se
generan DLL; y en Python, se distribuyen como paquetes instalables. Estas colecciones pueden
abarcar desde utilidades matematicas o criptograficas hasta conectores con servicios externos, como
plataformas de pago o almacenamiento en la nube. Al adoptar librerias versionadas, se pueden
realizar mejoras o correcciones de fallos de manera centralizada, asegurando que todos los

[121]

EDITORIAL TUTOR FORMACION

componentes que dependan de ellas puedan aprovechar esos cambios con una simple actualizacion,
siempre que se respete la compatibilidad de interfaces.

3.2.3. Interfaces.

Las interfaces establecen el contrato que define cdmo un componente se comunica con otro. Al
especificar métodos y tipos de datos sin descender a detalles de implementacion, se logra separar
la manera en que funciona un modulo internamente de la forma en que otros elementos lo utilizan.
Esto es muy valioso para la reusabilidad, porque si una interfaz permanece estable, es posible
sustituir o mejorar el componente sin que los consumidores se vean afectados. En un entorno de
microservicios, por ejemplo, las interfaces se pueden expresar mediante descripciones en
OpenAPI/Swagger, lo que facilita generar clientes y servidores en diferentes lenguajes y favorece
la integracion de mddulos que incluso pueden correr en plataformas distintas.

3.2.4. Protocolos y esquemas de mensajes.
En arquitecturas distribuidas, los protocolos y esquemas de mensajes desempefian un papel
determinante para la colaboracion entre componentes. Protocolos como HTTP, gRPC o AMQP se
usan ampliamente para comunicarse a través de la red, aprovechando estandares abiertos y librerias
gue simplifican la implementacion. Asimismo, los esquemas (por ejemplo, JSON, Protobuf o
Avro) describen la estructura de los datos intercambiados, de modo que cada parte del sistema sepa
exactamente qué esperar. Al definirse estos esquemas de forma independiente del codigo, se otorga
maés flexibilidad a los desarrolladores, que pueden actualizar o extender campos sin romper las
integraciones existentes, siempre que respeten los elementos ya establecidos. Esta estrategia encaja
muy bien con la evolucion constante que se da en los sistemas actuales.

3.2.5. Uso de lenguajes de programacion.

La reusabilidad también depende del lenguaje de programacién que se elija, dado que cada uno
ofrece ciertas caracteristicas que pueden facilitar o entorpecer el disefio de componentes genéricos.
Por ejemplo, lenguajes orientados a objetos como Java o C# brindan mecanismos nativos
(interfaces, clases abstractas, genéricos) que promueven la creacion de blogues independientes y
altamente configurables. En tanto, lenguajes como Python o JavaScript ofrecen un enfoque
dindmico que puede resultar mas flexible, pero demanda mayor disciplina para asegurar la
coherencia de los contratos a lo largo del tiempo. La adopcion de un lenguaje u otro debe analizarse
en funcion de las necesidades del proyecto, la experiencia del equipo y los requerimientos de
rendimiento o compatibilidad con otras tecnologias.

3.2.6. Estructurasy jerarquias de estructuras.

El modo en gue se organizan los directorios, médulos y paquetes dentro de un proyecto es decisivo
para el reuso, ya que, si el cédigo esta enredado y disperso, la extraccién de un componente para
emplearlo en otro proyecto se complica. Un ejemplo seria dividir el sistema en capas (presentacion,
negocio, acceso a datos) y, dentro de cada capa, crear submodulos que atiendan diferentes dominios
funcionales. En muchas organizaciones, se siguen convenciones estandar (por ejemplo, la
convencion de paquetes en Java o la estructura modular de Node.js) para que los desarrolladores
reconozcan rapidamente donde se hallan los componentes y cual es su responsabilidad. Esta
jerarquia también facilita la aplicacion de herramientas de automatizacion, que se benefician de
estructuras de proyecto consistentes para compilar, probar y desplegar.

[122]

EDITORIAL TUTOR FORMACION

3.2.7. Arquitecturas de sistemas.

La arquitectura de sistemas tiene un impacto directo en la reusabilidad de los componentes.
Disefios monoliticos con alto acoplamiento tienden a dificultar el reaprovechamiento de
funcionalidad, pues todo se encuentra integrado en un solo bloque. Sin embargo, si se adopta una
vision modular o de microservicios, cada pieza puede transformarse en un producto autbnomo que
cumpla con una funcion especifica dentro de la organizacion o incluso en distintos proyectos.
Ademas, arquitecturas donde se promueve la independencia de cada componente (por ejemplo,
usando contenedores o servicios de mensajeria) hacen que sea mas facil incorporar otros lenguajes
de programacién y nuevos equipos de trabajo. Esto incrementa la colaboracion y permite
aprovechar librerias o soluciones existentes sin tener que rehacer la infraestructura de
comunicacion.

3.3. Modelo de componente.

El modelo de componente define de manera detallada la forma en que cada parte del sistema se
disefiara, se comunicara con las demas y seré desplegada. En el disefio de elementos software con
tecnologias basadas en componentes, este modelo marca las pautas para garantizar que el
desarrollo se lleve a cabo de forma coherente, aprovechando las ventajas que ofrecen la
modularidad y la independencia de cada bloque. Cada componente debe especificar claramente sus
servicios, su interfaz, la forma en que se implementa y como se empaqueta para su ejecucion. A
continuacion, se explican los distintos aspectos de un modelo de componente y su relevancia en
proyectos donde la escalabilidad y la mantencion continua son factores muy importantes.

3.3.1. Especificacion de servicios: transacciones, seguridad,

per3|stenC|a Yy acceso remote.

En el modelo de componente, resulta esencial describir los servicios que provee, incluyendo
aquellos referentes a transacciones, seguridad, persistencia y acceso remoto. Por ejemplo, un
componente que maneje compras en linea podria ofrecer transacciones distribuidas que abarquen
varios pasos, integrando pagos e inventarios de manera confiable. En términos de seguridad, deben
definirse controles de autenticacion y autorizacion, quizad empleando estandares como OAuth2 o
JWT en un entorno de microservicios. Para la persistencia, un componente puede trabajar con
diversas bases de datos o incluso servicios de almacenamiento en la nube, por lo que es fundamental
describir como se gestionan las conexiones o coémo se mantiene la integridad de los datos.

El acceso remoto también adquiere mucha importancia, ya que en una arquitectura moderna los
componentes suelen desplegarse en distintos contenedores, servidores o regiones geograficas. Si el
servicio se expone mediante APIls REST, gRPC o colas de mensajeria, la especificacion debe
indicar claramente los endpoints y los protocolos admitidos. Asi se garantiza que otros componentes
0 clientes externos sepan con precision como consumir el servicio.

El siguiente diagrama representa los servicios esenciales que puede proveer un componente en un
modelo de arquitectura basado en componentes:

[123]

B Transacciones™

4

Y

Pagos & Inventarios

EDITORIAL TUTOR FORMACION

i Seguridad

|
Y

QAuth? & JWT

& Componente de
Compras en Linea

.
M Persistencia
I|

A 4

BD & Almacenamiento

 Transacciones
distribuidas

Autenticacion &
Autorizacion

¥

E Conexion a DB & Cloud

@ Acceso Remoto
AN

L)

APIs & gRPC

v

Balanceo de carga

1. Nodo central: Componente de Compras en Linea
- Representa un médulo clave dentro del sistema.
2. Servicios principales (niveles compactos):

- Transacciones: Maneja pagos e inventarios, asegurando transacciones distribuidas.
- Seguridad: Implementa OAuth2, JWT y control de acceso.

- Persistencia: Se conecta a bases de datos y almacenamiento en la nube.

- Acceso remoto: Expone APIs y gRPC con balanceo de carga.

3.3.2. Especificacion de Interface.

La especificacion de la interfaz define qué métodos, endpoints o eventos ofrece el componente a
los consumidores. Al adoptar principios de disefio como la independencia y el encapsulado, la
interfaz se convierte en el contrato con el que otras partes del sistema pueden interactuar sin
conocer la l6gica interna. Dentro de entornos de desarrollo como Java, C# o Python, esta
descripcion puede plasmarse en forma de clases de interfaz, documentacion API o archivos de
definicion (por ejemplo, archivos .proto en gRPC). Si el sistema esta basado en servicios web, la
interfaz puede describirse con OpenAPI o Swagger, asegurando que todos los equipos entiendan
con claridad los parametros, tipos de datos y formatos de respuesta.

El siguiente diagrama representa la especificacion de la interfaz en un sistema basado en
componentes, asegurando la comunicacion entre modulos de manera independiente y encapsulada:

B Componente
Expone
] % Interfaz
Métodos— Eventos T Datos
- Y
L] l)
Funciones Notificaciones JSON, XML
7 Ve N e ™~
i v) v v v v
Java, G .proto (gRPC) OpenAPI WebSockets Webhooks JSON Schema XML (SOAR)

[124]

EDITORIAL TUTOR FORMACION

1. Nodo principal: Componente

- Representa un moédulo que proporciona servicios o funcionalidades.
Expone una interfaz que define como otros sistemas pueden interactuar con él.

2. Interfaz (Contrato del componente):

Define los métodos, eventos y formatos de datos permitidos.
Garantiza independencia y encapsulacion, ocultando la légica interna.

3. Detalles de la interfaz:

Métodos:
- Implementados como clases de interfaz en lenguajes como Java, C#.
- Definidos en .proto para gRPC o documentados con OpenAPI/Swagger en REST.
Eventos:
- Usa mecanismos como WebSockets, MQTT para comunicacion en tiempo real.
- Permite suscripciones con Webhooks en sistemas event-driven.
Formatos de datos:
Datos en JSON o XML, dependiendo del estandar (REST, SOAP).
ProtoBuf en entornos gRPC para mayor eficiencia.

Mantener la interfaz estable es muy necesario para la evolucion del sistema. Cuando se necesita
agregar funcionalidades, la practica habitual es incorporar nuevos métodos o versiones, sin alterar
drasticamente los existentes, para no romper la compatibilidad con los consumidores que confian
en la version anterior de la interfaz.

3.3.3. Especificacion de la implementacion.

La implementacion del componente comprende la Idgica real que ejecuta los servicios, a menudo
basada en clases, patrones de disefio y uso de librerias o frameworks. Aqui se definen los
algoritmos, la estructura de datos y las interacciones con sistemas externos, siempre siguiendo los
lineamientos establecidos en la interfaz. En muchos casos, cada implementacion puede dividirse en
submodulos o capas internas, de manera que la parte que maneja la persistencia se separe de la
I6gica de negocio principal. Esto se traduce en un mantenimiento mas sencillo, ya que se puede
actualizar una libreria 0 mejorar un método sin influir en el resto del componente.

Asimismo, es interesante sefialar que un mismo contrato (interfaz) puede contar con diferentes
implementaciones para escenarios distintos. Por ejemplo, un componente que manipule datos
podria tener una version en memoria para pruebas rapidas y otra con persistencia real en una base
de datos SQL o NoSQL. Mientras se respete la misma interfaz, el resto de los sistemas pueden
emplear el componente sin enterarse de los cambios internos.

IfFEjempIo

Supongamos que estamos desarrollando un componente de autenticacion para una aplicacién web.
La interfaz del componente define los métodos iniciarSesion(usuario, contrasefia) Yy
validarToken(token), pero la implementacion puede variar segun las necesidades del entorno.

1. Implementacién con Base de Datos SQL.:

Se usa Spring Boot (Java) con Spring Security para manejar autenticacion. Spring
Security proporciona filtros de autenticacion, validacion de usuarios y manejo de

[125]

EDITORIAL TUTOR FORMACION

sesiones sin necesidad de programar cada aspecto manualmente. Cuando
agregamos Spring Security a una aplicacién de Spring Boot, automéaticamente
protege todos los endpoints de la API, exigiendo autenticacion.

o spring

Boot

Se almacena la informacion en PostgreSQL con la tabla usuarios(id, nombre,

contrasefia_hash).

Enlaces
rapidos

o Descargas

o Paguetes

o Fuente
o (atlogo de software
o Explorador de archivos

Descargas &,

Descargas de PostgreSQL

PostgreSQL esta disponible para su descarga como paquetes listos para usar o instaladores para varias plataformas, asi como un archivo de codigo fuente si desea

compilarlo Td mismo.

Paquetes e instaladores

Seleccione su familia de sistemas operativos:

Linux H

I}

mac0S

Windows

A

‘ Solaris ‘

Columna

id

nombre

Correo
contrasefia_hash

rol

CHECK (‘'admin®,

'usuario’,

Tipo de Dato
SERIAL
VARCHAR(188)
VARCHAR(15@)
TEXT
VARCHAR(5@)

[126]

\I

Restricciones
PRIMARY KEY
NOT NULL

UNIQUE MNOT NULL

MOT MULL

'‘moderador'} DEFAUL. ..

EDITORIAL TUTOR FORMACION

Estructura de la Tabla 'usuarios' en PostgreSQL

Columna Tipo de Dato Restricciones
id SERIAL PRIMARY KEY
nombre VARCHAR(100) NOT NULL
correo VARCHAR(150) UNIQUE NOT NULL
contrasefna_hash TEXT NOT NULL
rol VARCHAR(50) CHECK (‘admin', 'usuario', 'moderador’) DEFAULT 'usuario’
creado_en TIMESTAMP DEFAULT CURRENT_TIMESTAMP
Usuarios en la Tabla 'usuarios' en PostgreSQL
1D Nombre Correo Rol Creado En
1 Amarie amarie@elfos.com admin 2024-02-11 10:00:00
2 Arwen arwen@elfos.com usuario 2024-02-11 10:05:00
3 Caranthir caranthir@elfos.com moderador 2024-02-11 10:10:00
4 Celebom celeborn@elfos.com usuario 2024-02-11 10:15:00
5 Celebrindal celebrindal@elfos.com admin 2024-02-11 10:20:00
6 Curufin curufin@elfos.com usuario 2024-02-11 10:25:00
7 Elentari elentari@elfos.com moderador 2024-02-11 10:30:00
8 Elrond elrond@elfos.com admin 2024-02-11 10:35:00
9 Eowyn eowyn@elfos.com usuario 2024-02-11 10:40:00
10 Féanar feanor@elfos.com usuario 2024-02-11 10:45:00
11 Fingolfin fingolfin@elfos.com admin 2024-02-11 10:50:00
12 Galadriel galadriel@elfos.com moderador 2024-02-11 10:55:00

- Seusa BCrypt para almacenar las contrasefias de forma segura.

[127]

EDITORIAL TUTOR FORMACION

G O hitps//bcrypt-generator.com Y Tadudh ¢ Bl 4

Generador de Berypt - Generador y verificador de hash en linea

Generador de hash Berypt

Una herramienta sencilla para generar y verificar hashes berypt. Todo el
procesamiento se realiza en su navegador por seguridad.

Generar hash Verificar hash
Genere un hash berypt a partir de su texto. Las rondas més altas propercionan Compruebe si un hash berypt coincide con el texto original.
una mejor seguridad, pero tardan mas en procesarse.
Berypt Hash
Texto a hash
Texto original

Rondas (factor de costo): 12

- Se generan tokens JWT para la autenticacion de usuarios.

() httpsy/jwtio a» Ty = 4

J lm T - . e on regunia Elaborado por <’ authe

Los tokens web JSON son un método RFC 7519 abierto y estandar del sector para

representar reclamaciones de forma segura entre dos partes.

JWT. IO le permite decodificar, verificar y generar JWT.

MAS INFORMACION SOBRE JWT

2. Implementacion en Memoria para Pruebas:

- Para evitar depender de una base de datos en pruebas unitarias, se implementa una
version en memoria.

- Se usa un HashMap<String, String> para almacenar usuarios temporalmente sin
persistencia. [Este servicio almacenara usuarios temporalmente en un
HashMap<String, String>, donde la clave es el email y el valor es la contrasefia
cifrada con BCrypt:

[128]

EDITORIAL TUTOR FORMACION

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

import org.springframework.stereotype.Service;

import java.util. HashMap;
import java.util. Map;

import java.util.Optional;

@Service
public class AuthServiceMemoria {
private final Map<String, String> usuarios = new HashMap<>();
private final BCryptPasswordEncoder passwordEncoder = new BCryptPasswordEncoder();

public AuthServiceMemoria() {
/[Usuarios de prueba en memoria
registrarUsuario(*'usuariol@pruebas.com”, “contrasefial23");

registrarUsuario(*'usuario2@pruebas.com”, “claveSegura™);

public void registrarUsuario(String email, String password) {

usuarios.put(email, passwordEncoder.encode(password));

public boolean autenticarUsuario(String email, String password) {
return Optional.ofNullable(usuarios.get(email))
.map(hash -> passwordEncoder.matches(password, hash))
.0rElse(false);

Este controlador expone los endpoints /auth/login y /auth/register, permitiendo a los
usuarios autenticarse y registrarse en la memoria temporal.

import org.springframework.web.bind.annotation.*;

@RestController
@RequestMapping(*/auth™)
public class AuthControllerMemoria {

private final AuthServiceMemoria authService;

[129]

EDITORIAL TUTOR FORMACION

public AuthControllerMemoria(AuthServiceMemoria authService) {

this.authService = authService;

@PostMapping(“/register™)
public String registrar(@RequestParam String email, @RequestParam String password) {
authService.registrarUsuario(email, password);

return "Usuario registrado en memoria: " + email,

@PostMapping(*/login™)
public String login(@RequestParam String email, @RequestParam String password) {
if (authService.autenticarUsuario(email, password)) {

return "Inicio de sesion exitoso para " + email;

}
return "Credenciales incorrectas";
}
}
1. Aliniciar la aplicacion, se crean dos usuarios de prueba en memoria.
2. Si un usuario quiere registrarse, se usa
/auth/register?email=usuario@correo.com&password=clave.

3. Para iniciar sesion, se hace un POST a

fauth/login?email=usuario@correo.comé&password=clave.
4. No hay persistencia, ya que los datos se almacenan en un HashMap<String,
String>, Gtil para pruebas rapidas sin depender de PostgreSQL.
Esta variante es (til para tests automatizados sin necesidad de configurar
PostgreSQL.

3. Interoperabilidad:

Ambas implementaciones respetan la misma interfaz (Autenticador), por lo que los
consumidores no necesitan saber qué version estan usando.

Un entorno de desarrollo puede ejecutar la version en memoria, mientras que
produccion usa la implementacion con base de datos.

3.3.4. Especificacion de las unidades de despliegue

(modulos).
La especificacion de las unidades de despliegue describe cdmo se empaquetan y distribuyen los
componentes para su ejecucion. Cada modulo puede representarse como un archivo JAR, WAR o
EAR en el ecosistema Java, una DLL en .NET o un contenedor Docker en un escenario de
microservicios. Aqui se definen detalles como las dependencias necesarias, los requisitos de
configuracion (variables de entorno, archivos de propiedades, etc.) y los metadatos para la
orquestacion de los servicios.

[130]

EDITORIAL TUTOR FORMACION

En una arquitectura distribuida, cobra especial relevancia la descripcién de como se replican los
componentes, cOmo se monitorizan y qué escalado se aplica. Se pueden incluir también politicas
de versionado y migracion, para que, al lanzar una nueva version del médulo, los consumidores
sepan si se mantiene la compatibilidad hacia atrds o deben realizar ajustes. Esta aproximacion
estructurada permite a los equipos de desarrollo y operacion planificar la entrega continua (C1/CD)
y la puesta en produccidn con pocas sorpresas, contribuyendo a la estabilidad general del sistema.

Ii?Ejemplo

Consideremos como se distribuye y despliega el componente de autenticacion en diferentes
entornos.

1. Despliegue en Java con JAR:

Se empaqueta el componente como un archivo JAR (autenticacion.jar).
Sus dependencias incluyen Spring Boot, PostgreSQL JDBC Driver y JWT Library.
Se ejecuta en un servidor con java -jar autenticacion.jar.

2. Despliegue en Microservicios con Docker:

Se define un Dockerfile con la imagen de openjdk:17.

Se establece la configuracion por variables de entorno (DB_HOST,
SECRET_KEY).

Se usa Kubernetes para escalar automaticamente cuando hay muchas solicitudes.

3. Monitorizacion y Versionado:

Se integran logs con Prometheus y alertas con Grafana.

Las versiones siguen Semantic Versioning (1.2.3) para evitar incompatibilidades
en produccién.

Se utiliza un pipeline de CI/CD en GitHub Actions para automatizar despliegues
Seguros.

3.4. Modelos de integracion de componentes.

En un entorno de disefio de elementos software con tecnologias basadas en componentes, se
requiere establecer métodos claros y confiables para que los distintos médulos del sistema se
reconozcan, colaboren y compartan informacién entre si. Los modelos de integracion de
componentes abarcan desde la referencia y el uso de identidades Unicas, hasta la eleccion de
mecanismos de comunicacion como objetos distribuidos, servicios web o la utilizacion de
middleware especializado. Este proceso de integracion no solo afecta a la manera en que los
componentes se localizan y llaman unos a otros, sino también a la forma en que se escalan, se
actualizan y se mantienen en el tiempo. A continuacion, se describen algunos elementos clave de
estos modelos, dando una perspectiva de como se organizan las interacciones entre componentes
en sistemas modernos.

[131]

EDITORIAL TUTOR FORMACION

3.4.1. Referencias e identidad de objetos, componentes e

interfaces.

En muchos lenguajes de programacion, las referencias permiten acceder a objetos en memoria,
pero en un sistema de componentes distribuidos cada mddulo puede hallarse en un proceso, un
contenedor o incluso un servidor distinto. Por lo tanto, se necesita un modo de identificar de forma
inequivoca cada objeto o servicio. Esta identidad puede expresarse mediante identificadores tnicos
universales (UUID), nombres 18gicos o rutas de red. Por ejemplo, un componente denominado
“CarritoDeCompra” en una arquitectura de microservicios tal vez se identifique en el entorno de
Kubernetes con un nombre concreto, o a través de una URL si se trata de un servicio web.

Asimismo, en sistemas de objetos distribuidos tradicionales (como CORBA o RMI en Java), la
identidad se encapsula en “stubs” o proxies que representan a los objetos remotos.
En las interfaces, esta identidad se complementa con los métodos o endpoints que pueden invocarse.
Cada vez que un cliente requiere una operacion, debe contar con una referencia valida que le indique
donde y como puede Ilamar al componente. Este aspecto se vuelve trascendental cuando hay
maultiples réplicas de un mismo servicio, ya que la identidad y la referencia deben apuntar a una
instancia viva y funcional, incluso si la infraestructura realiza cambios en segundo plano para
balancear la carga o reemplazar contenedores.

IfFEjempIo

Imagina una aplicacion de comercio electronico basada en microservicios. En este sistema, el
componente CarritoDeCompra debe almacenar los productos que un usuario afiade antes de realizar
la compra. Como el sistema esté distribuido en contenedores dentro de Kubernetes, cada instancia
del carrito podria tener una identidad Unica generada por un UUID. De este modo, cuando un
usuario inicia sesion, el sistema puede recuperar su carrito mediante un identificador como cart-
1234-5678-9101. Si el sistema utilizara solo referencias en memoria sin un identificador persistente,
cada vez que un contenedor del microservicio se reiniciara, la informacion del carrito se perderia.

Supongamos que una empresa de logistica tiene un sistema distribuido donde varios servidores
gestionan pedidos en diferentes almacenes. Utilizando Java RMI, cada servidor almacena objetos
de pedidos en diferentes ubicaciones geogréaficas. Para que un cliente pueda consultar el estado de
su pedido, necesita una referencia a un objeto remoto. En este caso, cuando un usuario busca su
pedido #98765, el sistema obtiene un stub (proxy) que representa el objeto remoto del pedido y
permite interactuar con él como si fuera un objeto local. Sin este mecanismo de referencia, cada
solicitud deberia rastrear manualmente en qué servidor se encuentra el pedido, complicando la
escalabilidad.

En un sistema de banca en linea, multiples servidores manejan solicitudes de clientes que quieren
consultar el saldo de su cuenta. Si la APl de CuentasBancarias tiene varias réplicas activas, cada
solicitud HTTP debe dirigirse a una instancia funcional. Para lograrlo, los balances de carga
modernos utilizan identificadores l6gicos como https://api.banco.com/cuentas/{id} en lugar de
direcciones IP fijas. Asi, cuando un cliente consulta su cuenta 12345678, la infraestructura
selecciona dindmicamente un servidor disponible que maneje la solicitud. Si un servidor deja de
estar disponible, la identidad del servicio se mantiene sin que los clientes necesiten conocer detalles
internos.

[132]

EDITORIAL TUTOR FORMACION

3.4.2. Servicios de localizacion
Para que los componentes se encuentren y se comuniquen entre si, suelen implementarse servicios
de localizaciéon, también denominados servicios de descubrimiento o service discovery.
Herramientas como Consul o Zookeeper facilitan que cada componente registre su ubicacion y
sepa la de los demas. De este modo, si un microservicio necesita llamar a un servicio de facturacion,
no recurre a una direccion fija, sino que consulta al servicio de localizacion para saber qué instancias
estan disponibles y en qué hosts o puertos se encuentran. Esto hace que la arquitectura sea mas
dindmica, pues los componentes pueden arrancar y apagarse sin afectar a otros, siempre gque se
actualice la informacion en el servicio de localizacion.

) hitps://www.consulio & Gl L (Acmalizar %\;

HashiComn
G{f Consul Community Vision general Casosdeuso v Empresa Tutoriales Docs APl CLl Comunidad O & Descargar _

Redes basadas en laidentidad
con Consul

Consul utiliza identidades de servicio y practicas de red tradicionales para ayudar a las
organizaciones a conectar de forma segura las aplicaciones que se ejecutan en cualquier
entorno.

Solicitar demo para Consul Enterprise =

() https://zookeeper.apache.org

"
4
lﬁApaChe ZooKeeper™ proyecto ~ Documentacién ~ Desarrolladores » PPA ~

Bienvenido a Apache ZooKeeper™

En sistemas mas antiguos, este rol se cumplia mediante directorios globales, como servidores LDAP
0 modelos de nombres en CORBA, donde cada objeto remoto se anunciaba para que los clientes
supieran como acceder a él. Aunque dichas soluciones no han desaparecido, en la actualidad los
despliegues en contenedores y la adopcion masiva de la nube han impulsado la popularidad de
soluciones mas orientadas a la virtualizacion y la escalabilidad automatica, lo que coloca a los
servicios de localizacion en un lugar predominante dentro de las arquitecturas distribuidas.

3.4.3. Modelos de intercambio: objetos distribuidos, capa
intermedia (Middleware) e interaccion e integracion

mediante servicios web.

Como hemos visto en apartados anteriores, existen distintos modelos de intercambio que dan
forma a la interaccién entre componentes, reflejandose en la manera en que se envian peticiones,
se reciben respuestas y se comparten eventos:

1. Objetos distribuidos: Se basan en la idea de que los objetos pueden estar en distintos
procesos 0 maquinas, pero los desarrolladores pueden llamarlos como si estuvieran en la

[133]

EDITORIAL TUTOR FORMACION

misma aplicacion. Ejemplos historicos incluyen CORBA o DCOM, y en el ecosistema
Java, RMI. Este esquema supone que la llamada a un método remoto es similar a la de uno
local, aunque en realidad se realice mediante red y requiera serializar pardmetros y
resultados. Suelen proporcionar un alto nivel de transparencia, pero pueden imponer
complejidades asociadas a la latencia de red, a la gestion de proxies y a la necesidad de un
runtime compatible en ambas partes.

2. Capa intermedia (Middleware): En lugar de llamar directamente a objetos remotos, se
introduce un middleware que ofrece servicios transversales, como balanceo de carga,
seguridad unificada o gestion de mensajeria. De esta forma, cada componente se comunica
con la capa intermedia, y no directamente con otros componentes. Es el middleware quien
se encarga de enrutar las peticiones, ofrecer transacciones distribuidas o coordinar los
mensajes. Esta aproximacion, tipica de los servidores de aplicaciones JEE o de buses de
servicios empresariales (ESB), se integra frecuentemente en contextos corporativos para
unificar la comunicacidn entre sistemas legados y aplicaciones nuevas. En la actualidad,
muchos proyectos adoptan colas de mensajeria como RabbitMQ, ActiveMQ o Kafka para
lograr un acoplamiento mas bajo y una interaccion asincrona.

3. Interaccién e integracion mediante servicios web: Con la explosion de la web y las
arquitecturas de microservicios, los servicios web (REST, SOAP, gRPC, GraphQL, etc.)
se han convertido en un método muy extendido para la integracion de componentes. Cada
servicio se expone como un endpoint, y los clientes se comunican usando protocolos HTTP
0 HTTP/2, intercambiando datos en formatos como JSON o Protobuf. Esta metodologia
aporta un acoplamiento moderado, ya que cada componente puede evolucionar de manera
independiente mientras mantenga la compatibilidad con los esquemas y endpoints
definidos. Al combinarse con servicios de localizacion y herramientas de despliegue
automatico, se obtiene una arquitectura flexible y propicia para la evolucién continua.

La eleccion entre objetos distribuidos, middleware o servicios web depende de factores como la
complejidad del sistema, la disponibilidad de entornos runtime, la necesidad de transacciones y la
adopcidn de patrones como sincronicidad o asincronia. Lo mas frecuente hoy en dia es emplear un
modelo basado en APIs web, ya que permite integrar distintos lenguajes y plataformas con un coste
relativamente bajo de desarrollo y mantenimiento. Aun asi, sectores que manejan transacciones
muy estrictas o requieren baja latencia pueden optar por enfoques mas especificos.

A continuacion, se presenta una tabla que muestra ejemplos reales y concretos, describiendo
distintas situaciones y la eleccién méas adecuada entre objetos distribuidos, middleware o
servicios web, junto con el motivo principal de la seleccién. Cada escenario parte de necesidades
especificas, como la complejidad del sistema, la forma de desplegar o la exigencia de transacciones:

Escenario Complejidad o Enfoque mas Razon de la eleccion
requisitos adecuado
Pequeria plataforma | Escenario web, Servicios web Integracion sencilla entre
de comercio | demanda moderada, (APIs REST) frontend y backend,
electronico que | equipos con aprovechamiento de
ofrece un catdlogo y | experiencia en REST, librerias disponibles para
un modulo de pago | variedad de lenguajes JSON y HTTP, flexibilidad
al gestionar datos en
diferentes lenguajes
Empresa grande con | Infraestructura Middleware, por Proporciona
sistemas heredados | heterogénea, datos en ejemplo un bus funcionalidades de
(ERP y CRM) y | varios formatos, enrutado y transformacion
nuevas aplicaciones | equipos que trabajan de mensajes, integra

[134]

que deben
intercambiar
informacion
Plataforma
financiera con
necesidad de
transacciones
distribuidas en
multiples pasos
Sistema
multijugador en

linea con juegos en
tiempo real y minima
latencia

Microservicios que
gestionan eventos de
una plataforma de
dispositivos
conectados

Red de logistica con
sucursales
distribuidas y
conexiones de red
poco confiables

Empresa que
comercializa un
motor de informes a
varios clientes con
entornos de
desarrollo diferentes

Aplicacion interna
de colaboracion
documental con
prioridad en la
comunicacion dentro
de la misma red local

EDITORIAL TUTOR FORMACION

en plataformas
distintas

Datos muy delicados,
coherencia total ante
fallos, cumplimiento
de estandares
estrictos

Latencia muy baja,
sincronizacion
inmediata, posible
implementacion con
sockets o protocolos
especificos

Muchos productores
y consumidores de
datos, necesidad de
comunicacion
asincronica, escalado
rapido

Caidas frecuentes en
la comunicacion,
requerimiento de alta
disponibilidad, picos
de trafico variables

Necesidad de exponer
la misma
funcionalidad a
clientes con lenguajes
variados,

mantenimiento
prolongado
Todos los equipos

estin en la misma
LAN, sin apertura a
Internet, frecuencia
alta de llamadas entre
moédulos

empresarial de
servicios

Middleware
transaccional o
enfoque de
objetos

distribuidos en
casos puntuales

Objetos
distribuidos muy
especializados o
uso de sockets
directos

Servicios web con
mensajeria
asincrona (Kafka,
RabbitMQ, etc)

Middleware de
mensajeria
asincrona

Servicios web
(REST o gRPC)

Objetos
distribuidos

(RMI, NET
Remoting) 0
middleware local

[135]

sistemas antiguos y
modernos, maneja
seguridad y transacciones
sin exponer complejidad al
resto

Garantiza consistencia en
cada operacion, ofrece
rollback automdtico y
control centralizado de las
transacciones, fundamental
para entornos bancarios

Llamadas casi instantaneas
para coordinar
movimientos, se busca
reducir el retardo de la red,
se suelen usar protocolos
como WebSockets o UDP

Acoplamiento flexible
mediante suscripciones y
colas, cada microservicio
publica y consume eventos
sin bloquear a los demas

Garantiza reintentos y
entrega fiable, cada
sucursal puede funcionar
de forma aislada y luego
sincronizar pedidos y
envios en cuanto se
restablezca la conexion

Facilita la publicacion de
un contrato uniforme,
soporta la integracion con
clientes en lenguajes
distintos, la documentacion
con OpenAPI o gRPC
agiliza el soporte

Simplifica la llamada a
métodos remotos, se
aprovecha la baja latencia
de la red interna, no se
requiere exponer interfaces
REST de manera publica

EDITORIAL TUTOR FORMACION

-]
Actividad 9

A continuacion, se presentan una serie de afirmaciones relacionadas con el modelo de componentes.
Cada afirmacion tiene una palabra clave desordenada. Tu tarea es ordenar las letras para descubrir
la respuesta correcta.

En un sistema basado en componentes, cada parte del software debe definir qué servicios ofrece y
como se comunica con los demas modulos. Para ello, se establecen contratos conocidos como:

treainref —

Uno de los elementos fundamentales del modelo de componentes es la forma en que cada unidad
se distribuye e instala en los distintos entornos. A este proceso se le llama:

oepylsdeg —

Cuando un componente ofrece funcionalidades como transacciones, seguridad y persistencia de
datos, se dice que define su:

icvesesorpiadon —
Para que un componente pueda evolucionar sin afectar a los demas, debe mantener estable su:
zentriao —

El acceso remoto de los componentes se logra mediante protocolos como HTTP, gRPC o colas de
mensajeria. Estas formas de comunicacion se conocen como:

dimoeos ed riciaagnte —

[136]

EDITORIAL TUTOR FORMACION

4. Comparacion entre meétodos de
Intercambio en las principales
Infraestructuras de componentes:
OMG: CORBA, OMA, Java:
JavaBeans, EJBs y Microsoft:
COM, OLE/ActiveX, .NET.

Las infraestructuras de componentes han evolucionado a lo largo del tiempo, ofreciendo
diferentes estrategias para el intercambio de informacion y la integracion de maodulos en
aplicaciones distribuidas. En el disefio de elementos software con tecnologias basadas en
componentes, es importante conocer las opciones histéricas y las méas actuales, ya que, segun el
entorno y los requisitos, pueden resultar méas o menos adecuadas. A continuacion, se expone una
comparacion entre algunos métodos de intercambio propuestos por OMG (CORBA y OMA), las
soluciones de Java (JavaBeans y EJBs) y las ofrecidas por Microsoft (COM, OLE/ActiveX y .NET),
destacando sus usos y evolucién en los proyectos modernos.

En primer lugar, el Object Management Group (OMG) impuls6 CORBA (Common Object
Request Broker Architecture) como una manera de lograr que objetos escritos en distintos lenguajes
y ejecutados en plataformas diferentes pudiesen comunicarse a través de una capa conocida como
ORB (Object Request Broker). CORBA ofrecia un modelo de objetos distribuidos, un lenguaje de
definicion de interfaces (IDL) y la promesa de independencia respecto a sistemas operativos o
lenguajes de programacion. No obstante, con el tiempo, varios desarrolladores han optado por
alternativas mas ligeras o mas sencillas de configurar, especialmente con la irrupcion de las
arquitecturas de microservicios. Pese a ello, aln se encuentran implementaciones de CORBA en
sectores donde la confiabilidad y la interoperabilidad entre sistemas heterogéneos siguen siendo
prioritarias. La OMA (Object Management Architecture) complementé esta vision al definir un
conjunto de servicios y facilidades que podian extender CORBA, dotando al ecosistema de un
enfoque mas amplio para la gestion de objetos en entornos distribuidos.

En el mundo de Java, se han presentado distintas aproximaciones para la creacién y el intercambio
de componentes. JavaBeans surgié como un modelo para encapsular propiedades, eventos y
métodos en objetos reutilizables que pudieran trabajar facilmente en IDEs y entornos visuales de
desarrollo. Se usaban con frecuencia para construir elementos de interfaz o légicas sencillas que
debian moverse de un lugar a otro dentro de una misma aplicacion. Por otra parte, Enterprise
JavaBeans (EJBs) elevaron la idea de un componente a un entorno mas corporativo, centrandose
en servicios de negocio y transacciones distribuidas. En los servidores de aplicaciones (por ejemplo,
Jakarta EE), los EJBs se gestionan de manera que el programador se beneficia de funciones como
transacciones, seguridad y concurrencia, sin tener que lidiar con la complejidad de implementarlas.
Con la llegada de Spring y arquitecturas de microservicios, muchos desarrolladores prefieren
soluciones mas ligeras, aunque los EJBs todavia se usan en sistemas de gran escala que requieren
la robustez del modelo clésico.

En el lado de Microsoft, la evolucién ha seguido un trayecto notable. COM (Component Object
Model) sirvi6 como base para crear componentes binarios que podian integrarse en distintas
aplicaciones de Windows, incluyendo soporte para lenguajes variados. De COM derivaron
tecnologias como OLE (Object Linking and Embedding) y ActiveX, usadas en su momento para
insertar documentos, reproducir contenidos o interactuar con controles dentro de navegadores. Sin
embargo, con la expansion de la web y la aparicion de nuevas necesidades de seguridad y

[137]

EDITORIAL TUTOR FORMACION

escalabilidad, muchos de estos enfoques quedaron limitados al &mbito Windows o al software
legacy. Con la llegada de la plataforma .NET, Microsoft facilito el disefio de componentes y
servicios mas flexibles, apoyandose en lenguajes como C# o VB.NET y en un entorno de ejecucion
unificado (CLR). Hoy en dia, la plataforma .NET se ha modernizado (incluyendo .NET 5, .NET 6
y .NET 7), ampliando su alcance a entornos Linux y macOS, y ofreciendo un modelo més abierto
para el desarrollo de soluciones distribuidas y la integracién de microservicios.

En el presente, la tendencia se inclina hacia arquitecturas mas abiertas y basadas en protocolos o
estandares web, como REST o gRPC, en parte porque facilitan la interoperabilidad con mdltiples
lenguajes y se ajustan mejor al mundo de los contenedores y la nube. Sin embargo, los modelos
clasicos de componentes (CORBA, EJBs, COM, etc.) persisten en numerosos sistemas que adn
valoran la estabilidad y la robustez de esas tecnologias, sobre todo en organizaciones donde la
migracion a alternativas mas modernas conlleva riesgos o costos elevados. Esta coexistencia de
enfoques demuestra que cada solucién responde a un conjunto de problemas y prioridades
diferentes.

Asi, cuando se aborda el disefio de elementos software con tecnologias basadas en componentes,
conviene estudiar con detalle los requerimientos de interoperabilidad, la infraestructura disponible,
los patrones de uso y las expectativas a largo plazo. CORBA puede ser idoneo si se necesita integrar
sistemas muy dispares con énfasis en la neutralidad de lenguaje. Los EJBs funcionan bien en
entornos donde la capacidad transaccional y la gestién de la seguridad a nivel empresarial estan
muy presentes. Mientras que .NET, con su ecosistema y la adopcion de estandares més recientes,
se ajusta perfectamente a proyectos que deseen abarcar plataformas distintas y aprovechar
herramientas modernas de despliegue.

4.1. Diagramacion y documentacion de
componentes.

La diagramacién y documentacién de componentes permite ilustrar de manera gréfica y
ordenada la forma en que cada parte del sistema se conecta con las demas, facilitando la
comprension y el mantenimiento a lo largo de su ciclo de vida. En el disefio de elementos software
con tecnologias basadas en componentes, se recomiendan distintas representaciones que
describan tanto la estructura informativa como el comportamiento dindmico de las aplicaciones. A
través de estos recursos, los equipos de desarrollo y los interesados en el proyecto adquieren una
vision clara de los médulos existentes, sus dependencias, como se despliegan y de qué manera
interactdan para cubrir los requerimientos.

4.1.1. Modelo de informacion: diagramas conceptuales,
diagramas de arquitectura de componentes vy

diagramas de despliegue.

El modelo de informacion abarca, de forma importante, las perspectivas estaticas del sistema.
Dentro de este modelo, los diagramas conceptuales presentan las entidades principales y las
relaciones que comparten, resultando Utiles para entender los elementos claves del dominio y su
vinculo con las reglas de negocio. El diagrama conceptual que se expone a continuacion representa
entidades principales y sus relaciones en un sistema de comercio electronico. Muestra cdmo un
Cliente realiza uno o varios Pedidos, cada pedido puede contener maltiples Productos, y cada
producto pertenece a una Categoria:

[138]

EDITORIAL TUTOR FORMACION

doub total
contiene

F'rcw:lu cto

string nombre

Por otro lado, los diagramas de arquitectura de componentes detallan como se agrupan y se
conectan los maédulos, especificando qué interfaces exponen y de qué otros médulos dependen. Esta
representacion es muy valiosa cuando se trabaja en equipos grandes o se planifica la evolucién de
la solucién, ya que permite identificar rdpidamente si un componente tiene demasiadas
dependencias o si puede reutilizarse en distintos entornos. El siguiente diagrama representa los
modulos de una aplicacion de gestion de usuarios con autenticacion y notificaciones. Se visualiza
cémo los servicios de autenticacion, usuarios y notificaciones interacttian con la base de datos y el
servidor de correo, mientras que una API Gateway centraliza el acceso:

[139]

EDITORIAL TUTOR FORMACION

Aplicacion

/‘ APl Gateway

— —
— —

- N

Servicio de Autenticacion ‘ ‘ Servicio de Usuarios ‘ ‘ Servicio de Notificaciones

| |
\]

Valida credenciales Recupera datos Envia alertas

l

Servidor de Correo

Ademas, los diagramas de despliegue muestran cdmo los componentes se distribuyen en la
infraestructura, indicando los servidores, contenedores o procesos donde se ejecutan. Esto ayuda a
planificar la escalabilidad y la resiliencia, al mostrar de manera visual el flujo de comunicacién
entre nodos y la ubicacion de cada mddulo en diferentes niveles de la plataforma. A continuacion,
se representa la distribucion de componentes en una infraestructura con contenedores Docker.

Muestra como la aplicacién se despliega en tres servidores, separando la funcionalidad en médulos
independientes:

Servidor Web
Servidor de Notificaciones

Microservicio Notificaciones

Envia emails Servidor Nginx

i

4

Contenedor App ‘

L
3\
|

Registra Logs

] Servidor de Aplicacion

Servicio de Logs

. -

EDITORIAL TUTOR FORMACION

4.1.2. Modelo dinamico: diagramas de interaccion y de
actividad, diagramas de casos de uso y diagramas de

estado.

El modelo dindmico describe los procesos y la forma en que los componentes se comportan en
tiempo de ejecucion. Entre las representaciones mas importantes para este enfoque se encuentran
los diagramas de interaccién, que incluyen los de secuencia o colaboracion.

En un diagrama de secuencia, puede verse cdmo cada componente recibe y envia mensajes, paso
a paso, para llevar a cabo una funcionalidad. Esto aporta claridad acerca de quién inicia una
operacion, en qué orden se ejecutan las peticiones y cudl es la dependencia temporal entre mddulos.
El siguiente diagrama representa cOmo un usuario inicia sesion en una aplicacién, pasando por el
servicio de autenticacion y la base de datos:

Usuario ‘ API Gateway Servicio de Autenticacion ‘ Base de Datos ‘

Enviar credenciales (usuario, contraseria)
Validar credenciales
Consultar usuario y contrasefia
Retorna datos del usuario
Generar Token JWT

Retorna Token de sesion

Usuario ‘ APl Gateway Servicio de Autenticacion ‘ Base de Datos ‘

Por su parte, los diagramas de actividad representan flujos de trabajo que involucran maltiples
estados y decisiones, siendo ideales para describir algoritmos o procesos de negocio compuestos
por pasos sucesivos. Por ejemplo, el siguiente diagrama representa el flujo de pago en un sistema
de comercio electronico:

[141]

EDITORIAL TUTOR FORMACION

Iniciar proceso de pago

Seleccionar método

SeleccionMetodo

Tarjeta de -:rédltc: PayPal

PagoTarjeta PagoPayPal

¥ ¥

Verificacion de tarjeta ‘ Autenticacion en PayPal

Confirmar pago

Generar factura

¥

Fin del proceso

Para reflejar la relacion del sistema con los usuarios o con otros actores, los diagramas de casos
de uso resultan de gran ayuda, pues describen las acciones principales de cada actor y la
funcionalidad que el sistema debe proveer sin entrar en detalles de implementacion. El siguiente
diagrama muestra las interacciones entre usuarios y el sistema en un portal de comercio electrénico:

Cliente Administrador

/

Realizar ped{do Cancelar pedido Consultar historial Actualizar datos de usuario

~ .

Sistema

Por su parte, los diagramas de estado son Utiles para aquellos componentes que manejan ciclos de
vida complejos, cambiando de un estado a otro segln eventos o condiciones especificas. Esto cobra

[142]

EDITORIAL TUTOR FORMACION

relevancia cuando se requiere modelar transiciones y restricciones con precisién, como ocurre en
sistemas de reserva de vuelos o de gestion de produccién. Por ejemplo, el siguiente diagrama
representa el ciclo de vida de un pedido en una tienda en linea:

PedidoCreado ‘

—

Pago confirmado

| Pagado

Pedido enﬁado

(] Cancelacion antes del
Enviado

envio
Pedido recibido ;;or el Pedido devuelto por el
cliente cliente
Entregado | | Devuelto ‘ Cancelado

[143]

EDITORIAL TUTOR FORMACION

5. Prueba de autoevaluacion.

¢Cual de las siguientes afirmaciones describe mejor un componente software en la orientacion
a componentes?

a) Es una unidad funcional auténoma con una interfaz bien definida.

b) Es un objeto que solo puede existir dentro de una aplicacion especifica.

¢) Es un mddulo de codigo que no requiere una interfaz para interactuar con otros médulos.
¢Cual es una diferencia clave entre un componente y un objeto en la orientacion a objetos?

a) Los componentes dependen directamente de la aplicacion en la que se crean, mientras que los
objetos son auténomos.

b) Los componentes pueden desplegarse y operar independientemente, mientras que los objetos
suelen depender del entorno de ejecucién.

c) Los objetos siempre tienen una interfaz pablica, mientras que los componentes no necesitan
interfaces definidas.

¢Cual de las siguientes caracteristicas define a una arquitectura basada en middleware?
a) No permite la comunicacion entre distintos sistemas o tecnologias.

b) Facilita la interoperabilidad entre componentes a través de una capa intermedia.

c) Requiere que todos los componentes estén en el mismo entorno de ejecucion.

¢Qué funcion cumplen las interfaces en el disefio de componentes?

a) Permiten la comunicacién entre componentes asegurando consistencia y compatibilidad.
b) Evitan que los componentes puedan escalar en entornos distribuidos.

c) Hacen que los mddulos dependan unos de otros sin importar su proposito.

¢ Qué ventaja proporciona el escalado de componentes en una arquitectura basada en la nube?
a) Permite aumentar la capacidad de procesamiento sin modificar el resto del sistema.

b) Reduce la modularidad del sistema al centralizar los procesos.

c¢) Impide que diferentes instancias de un componente interactien entre si.

En la orientacion a componentes, un encapsula logica de negocio y datos,
permitiendo su reutilizacion en diferentes aplicaciones.

A diferencia de los objetos, los componentes pueden operar de manera , lo que
facilita su integracién en entornos distribuidos.

Un sistema basado en permite que distintos componentes se comuniquen a través de
una capa intermedia sin necesidad de estar directamente acoplados.

El versionado de es fundamental para garantizar la compatibilidad con versiones
previas y evitar interrupciones en los clientes.

Un componente sin estado (stateless) es mas facil de escalar horizontalmente porque no
almacena entre diferentes instancias.

[144]

